2025年玩转母题八年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年玩转母题八年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年玩转母题八年级数学全一册人教版》

3. 新定义:若四边形的一组对角均为直角,则称该四边形为对直四边形.如图,在对直四边形ABCD中,已知∠ABC=90°,O为AC的中点.
(1)求证:BD的垂直平分线经过点O;
(2)若AB=6,BC=8,请在备用图中补全四边形ABCD,使四边形ABCD的面积取得最大值,并求此时BD的长度.
答案:
3.【思路精析】
(1)由直角三角形的性质可得$BO = DO$,从而可得结论;
(2)作$DE \perp BD$,交$BA$的延长线于点$E$,由“$ASA$”可证$\triangle DAE \cong \triangle DCB$,得$DE = DB$,$AE = CB = 8$,求出$BE$的长,再由等腰直角三角形的性质求出$BD$的长.
【超详解答】
(1)证明:如图1,连接$BO$、$DO$,
图1
在对直四边形$ABCD$中,$\angle ABC = 90^{\circ}$,
$\therefore \angle ABC = \angle ADC = 90^{\circ}$.
又$O$为$AC$的中点,
$\therefore BO = \frac{1}{2}AC$,$DO = \frac{1}{2}AC$,
$\therefore BO = DO$.
$\therefore BD$的垂直平分线经过点$O$.
(2)解:$\because$四边形$ABCD$的面积$= S_{\triangle ABC} + S_{\triangle ACD}$,$S_{\triangle ABC}$是定值,
$\therefore S_{\triangle ACD}$有最大值时,四边形$ABCD$的面积有最大值.
$\because AC$是定长,
$\therefore$当$OD \perp AC$时,$S_{\triangle ACD}$有最大值.
如图2,作$DE \perp BD$,交$BA$的延长线于点$E$,
图2
$\because AO = OC = OD$,$OD \perp AC$,
$\therefore AD = CD$.
$\because DE \perp BD$,
$\therefore \angle EDB = \angle ADC = 90^{\circ}$.
$\therefore \angle EDA = \angle BDC$.
$\because \angle ABC = \angle ADC = 90^{\circ}$,
$\therefore \angle DAB + \angle DCB = 180^{\circ}$.
$\because \angle DAB + \angle DAE = 180^{\circ}$,
$\therefore \angle DAE = \angle DCB$.
$\therefore \triangle DAE \cong \triangle DCB(ASA)$.
$\therefore DE = DB$,$AE = CB = 8$.
$\therefore \triangle DEB$是等腰直角三角形,$BE = 14$.
$\therefore BD = 7\sqrt{2}$.
4. 定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:
(1)如图1,在正方形ABCD中,E是CD上的点,将△BCE绕点B旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?
(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE,求BE的长.

答案:
4.【思路精析】
(1)根据“直等补”四边形的定义进行逐项证明即可得出结论;
(2)过点$C$作$CF \perp BE$于点$F$,首先证明四边形$CDEF$是矩形,则$EF = CD = 1$,再证明$\triangle ABE \cong \triangle BCF$,得$BE = CF$,设$BE = x$,根据勾股定理解出$x$的值即可.
【超详解答】
(1)证明:$\because$四边形$ABCD$是正方形,
$\therefore \angle ABC = \angle BAD = \angle C = \angle D = 90^{\circ}$.
$\because$将$\triangle BCE$绕点$B$旋转,使$BC$与$BA$重合,此时点$E$的对应点$F$在$DA$的延长线上,
$\therefore BE = BF$,$\angle CBE = \angle ABF$.
$\therefore \angle EBF = \angle ABC = 90^{\circ}$.
$\therefore \angle EBF + \angle D = 180^{\circ}$.
$\therefore$四边形$BEDF$为“直等补”四边形.
(2)解:如图,过点$C$作$CF \perp BE$于点$F$,
FCD
则$\angle CFE = 90^{\circ}$,
$\because$四边形$ABCD$是“直等补”四边形,$AB = BC = 5$,$CD = 1$,$AD > AB$,
$\therefore \angle ABC = 90^{\circ}$,$\angle ABC + \angle D = 180^{\circ}$.
$\therefore \angle D = 90^{\circ}$.
$\because BE \perp AD$,
$\therefore \angle DEF = 90^{\circ}$.
$\therefore$四边形$CDEF$是矩形.
$\therefore EF = CD = 1$.
$\because \angle ABE + \angle A = \angle CBE + \angle ABE = 90^{\circ}$,
$\therefore \angle A = \angle CBF$.
$\because \angle AEB = \angle BFC = 90^{\circ}$,$AB = BC = 5$,
$\therefore \triangle ABE \cong \triangle BCF(AAS)$.
$\therefore BE = CF$.
设$BE = CF = x$,则$BF = x - 1$,
$\because$在$Rt\triangle BCF$中,$CF^{2} + BF^{2} = BC^{2}$,
$\therefore x^{2} + (x - 1)^{2} = 5^{2}$,
解得$x = 4$或$x = - 3$(舍去),
$\therefore BE = 4$.

查看更多完整答案,请扫码查看

关闭