2025年玩转母题八年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年玩转母题八年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年玩转母题八年级数学全一册人教版》

1. 如图,在△ABC 中,AB = AC,D、A、E 三点都在直线 m 上,并且有∠BDA = ∠AEC = ∠BAC = α,若 DE = 10,BD = 3,求 CE 的长.
答案: 1.【思路精析】由$\angle AEC = \angle BAC = \alpha$,推出$\angle ACE = \angle BAD$,再根据AAS证明$\triangle BAD \cong \triangle ACE$,得$AD = CE$,$BD = AE = 3$,即可得出结果.
【超详解答】解:$\because \angle AEC = \angle BAC = \alpha$,
$\therefore \angle ACE + \angle CAE = 180^{\circ} - \alpha$,
$\angle BAD + \angle CAE = 180^{\circ} - \alpha$.
$\therefore \angle ACE = \angle BAD$.
在$\triangle BAD$和$\triangle ACE$中,
$\begin{cases} \angle BDA = \angle AEC, \\ \angle BAD = \angle ACE, \\ AB = CA, \end{cases}$
$\therefore \triangle BAD \cong \triangle ACE(AAS)$.
$\therefore AD = CE$,$BD = AE$,可得$AE = 3$.
$\therefore AD = DE - AE = 10 - 3 = 7$.
$\therefore CE = AD = 7$.
2. 如图,已知两个等腰直角三角形 ABC 和 CDE,它们的直角顶点 B、D 在直线 MN 上,过点 A、E 分别作 AG ⊥ MN,EF ⊥ MN,垂足分别为 G、F. 请你探索线段 EF、BD、AG 之间的数量关系,为
BD = EF + AG
.
答案:
2.【思路精析】过点$C$作$CH \perp MN$于点$H$,只要证明$\triangle FDE \cong \triangle HCD(AAS)$,可得$EF = DH$.同理可证$\triangle BHC \cong \triangle AGB$,可得$BH = AG$,即可解决问题.
【超详解答】解:如图,过点$C$作$CH \perp MN$于点$H$.
       MFDHGhBN
$\because EF \perp MN$,$CH \perp MN$,$\triangle CDE$是等腰直角三角形,
$\therefore \angle DFE = \angle EDC = \angle CHD = 90^{\circ}$,$DE = CD$.
$\therefore \angle EDF + \angle CDH = 90^{\circ}$,$\angle CDH + \angle DCH = 90^{\circ}$.
$\therefore \angle EDF = \angle DCH$.
在$\triangle FDE$和$\triangle HCD$中,
$\begin{cases} \angle EDF = \angle DCH, \\ \angle DFE = \angle CHD, \\ DE = CD, \end{cases}$
$\therefore \triangle FDE \cong \triangle HCD(AAS)$.
$\therefore EF = DH$.
同理可证$\triangle BHC \cong \triangle AGB$,$\therefore BH = AG$.
$\therefore BD = DH + BH = EF + AG$.
故答案为:$BD = EF + AG$.
3. 如图,在△ABC 中,∠ABC = 45°,∠ACB 为钝角,以 AC 为边在右侧作等腰直角三角形 ACD,∠ADC = 90°,过点 D 作 DE ⊥ BC,交 BC 的延长线于点 E,连接 BD,△BCD 的面积为 9,求 BC 的长.
答案:
3.【思路精析】构造“一线三等角”模型是解题的关键,过点$A$作$AF \perp ED$,交$ED$的延长线于点$F$,过点$A$作$AG \perp BE$于点$G$,证明$\triangle CDE \cong \triangle DAF(AAS)$,得到相等的线段,再根据$\triangle BCD$的面积,列出等式,求出$BC$的长.
【超详解答】解:如图,过点$A$作$AF \perp ED$交$ED$的延长线于点$F$,过点$A$作$AG \perp BE$于点$G$,
        DCG
$\because DE \perp BE$,$AF \perp ED$,$\triangle ACD$是等腰直角三角形,
$\therefore \angle E = \angle F = \angle ADC = 90^{\circ}$,$CD = DA$.
$\therefore \angle ADF + \angle DAF = 90^{\circ}$,$\angle ADF + \angle CDE = 90^{\circ}$.
$\therefore \angle DAF = \angle CDE$.
在$\triangle CDE$和$\triangle DAF$中,
$\begin{cases} \angle E = \angle F, \\ \angle CDE = \angle DAF, \\ CD = DA, \end{cases}$
$\therefore \triangle CDE \cong \triangle DAF(AAS)$.
$\therefore CE = DF$,$DE = AF$.
设$CE = DF = a$,$DE = AF = b$,
$\because \triangle BCD$的面积为$9$,
$\therefore \frac{1}{2}BC · DE = 9$,即$BC = \frac{18}{b}$.
$\because DE \perp BE$,$AF \perp ED$,$AG \perp BE$,
$\therefore$四边形$AFEG$是矩形,
$\therefore AG = EF = DF + DE = a + b$,$EG = AF = b$.
$\therefore CG = CE - GE = a - b$.
$\therefore BG = BC + CG = \frac{18}{b} + a - b$.
$\because \angle ABC = 45^{\circ}$,$AG \perp BE$,
$\therefore AG = BG$.
$\therefore a + b = \frac{18}{b} + a - b$.
$\therefore b = 3$.
$\therefore BC = \frac{18}{b} = \frac{18}{3} = 6$.

查看更多完整答案,请扫码查看

关闭