2025年北大绿卡九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年北大绿卡九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年北大绿卡九年级数学下册人教版》

1. 如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方,那么海轮航行的距离AB长是( ).(第1题图)
A. 2海里
B. 2sin 55°海里
C. 2cos 55°海里
D. 2tan 55°海里
[img id=第1题图]
答案: C
2. 如图,在一笔直的海岸线l上有相距2 km的A、B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是_______ km.
(第2题图)
答案: $\sqrt{3}$
3. A港在B地的正南方向10$\sqrt{3}$千米处,一艘轮船由A港开出向西航行,某人第一次在B地望见该船在南偏西30°方向,半小时后,又望见该船在南偏西60°方向,则该船速度为_______千米/时.
答案: 40
4. 一艘轮船由西向东航行,行驶到A岛时,测得灯塔B在它的北偏东31°方向上,继续向东航行10 nmile到达C港,此时测得灯塔B在它的北偏西61°方向上,求轮船在航行过程中与灯塔B的最短距离.(结果精确到0.1 nmile,参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60,sin 61°≈0.87,cos 61°≈0.48,tan 61°≈1.80)
[img id=第4题图]
(第4题图)
答案:
【解】过点$B$作$BD\perp AC$于点$D$.
$\because AE\perp AC,CF\perp AC,\therefore BD// AE// CF$,
$\therefore \angle ABD = 31^{\circ},\angle CBD = 61^{\circ}$,
$\therefore AD = BD\cdot\tan\angle ABD = BD\cdot\tan31^{\circ}\approx0.6BD,CD = BD\cdot\tan\angle CBD = BD\cdot\tan61^{\circ}\approx1.8BD$.
$\because AC = 10\ n mile$,
$\therefore AD + CD = 0.6BD + 1.8BD = 10$,
解得$BD=\frac{25}{6},\therefore BD\approx4.2\ n mile$,
$\therefore$轮船在航行过程中与灯塔$B$的最短距离约为$4.2\ n mile$.

5. 如图,河坝横断面迎水坡AB的坡比是1∶$\sqrt{3}$(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3 m,则坡面AB的长度是( ).(第5题图)
A. 9 m
B. 6 m
C. 6$\sqrt{3}$ m
D. 3$\sqrt{3}$ m
答案: B
6. 如图,斜坡CD的坡度i=1∶2,在斜坡上有一棵垂直于水平面的大树AB,当太阳光与水平面的夹角为60°时,大树在斜坡上的影子BE长为10米,则大树AB的高为_______米.
[img id=第6题图]
(第6题图)
答案: $4\sqrt{15}-2\sqrt{5}$

查看更多完整答案,请扫码查看

关闭