第66页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
16. 如图,一副三角板拼成如图所示的图形. 若AB = 2\sqrt{2},则BC的长为( ).

A. 2\sqrt{2}
B. 3
C. 2 + \frac{2\sqrt{3}}{3}
D. 2\sqrt{3} + 2
A. 2\sqrt{2}
B. 3
C. 2 + \frac{2\sqrt{3}}{3}
D. 2\sqrt{3} + 2
答案:
C 【解析】如图,过$A$作$AD\perp BC$于$D$.

$\because\angle ABD = 45^{\circ}$,$AB = 2\sqrt{2}$,
$\therefore AD = BD = \frac{\sqrt{2}}{2}\times2\sqrt{2} = 2$.
$\because\angle ACB = 60^{\circ}$,
$\therefore CD = \frac{AD}{\tan 60^{\circ}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$,
$\therefore BC = BD + CD = 2 + \frac{2\sqrt{3}}{3}$.
故选 C.
C 【解析】如图,过$A$作$AD\perp BC$于$D$.
$\because\angle ABD = 45^{\circ}$,$AB = 2\sqrt{2}$,
$\therefore AD = BD = \frac{\sqrt{2}}{2}\times2\sqrt{2} = 2$.
$\because\angle ACB = 60^{\circ}$,
$\therefore CD = \frac{AD}{\tan 60^{\circ}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$,
$\therefore BC = BD + CD = 2 + \frac{2\sqrt{3}}{3}$.
故选 C.
17. 如图所示,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC = 2,则tan D = ________.
答案:
$2\sqrt{2}$ 【解析】连接$BC$.$\because AB$是$\odot O$的直径,
$\therefore\angle ACB = 90^{\circ}$.$\because AB = 6$,$AC = 2$,
$\therefore BC = \sqrt{AB^{2} - AC^{2}} = \sqrt{6^{2} - 2^{2}} = 4\sqrt{2}$.
又$\because\angle D = \angle A$,
$\therefore\tan D = \tan A = \frac{BC}{AC} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}$.
$\therefore\angle ACB = 90^{\circ}$.$\because AB = 6$,$AC = 2$,
$\therefore BC = \sqrt{AB^{2} - AC^{2}} = \sqrt{6^{2} - 2^{2}} = 4\sqrt{2}$.
又$\because\angle D = \angle A$,
$\therefore\tan D = \tan A = \frac{BC}{AC} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}$.
18. 如图,在矩形ABCD中,BC = \sqrt{2}AB,O为BC中点,OE = AB = 4,则扇形EOF的面积为________.
答案:
$4\pi$ 【解析】$\because BC = \sqrt{2}AB$,$AB = 4$,$\therefore BC = 4\sqrt{2}$.
$\because O$为$BC$中点,
$\therefore OB = OC = \frac{1}{2}BC = 2\sqrt{2}$.
$\because OE = 4$,
在$Rt\triangle OBE$中,$\cos\angle BOE = \frac{OB}{OE} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2}$,
$\therefore\angle BOE = 45^{\circ}$.
同理$\angle COF = 45^{\circ}$.
$\therefore\angle EOF = 180^{\circ} - 45^{\circ} - 45^{\circ} = 90^{\circ}$,
$\therefore$扇形$EOF$的面积为$\frac{90\pi\cdot4^{2}}{360} = 4\pi$.
故答案为$4\pi$.
$\because O$为$BC$中点,
$\therefore OB = OC = \frac{1}{2}BC = 2\sqrt{2}$.
$\because OE = 4$,
在$Rt\triangle OBE$中,$\cos\angle BOE = \frac{OB}{OE} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2}$,
$\therefore\angle BOE = 45^{\circ}$.
同理$\angle COF = 45^{\circ}$.
$\therefore\angle EOF = 180^{\circ} - 45^{\circ} - 45^{\circ} = 90^{\circ}$,
$\therefore$扇形$EOF$的面积为$\frac{90\pi\cdot4^{2}}{360} = 4\pi$.
故答案为$4\pi$.
19. 在△ABC中,AC = 4\sqrt{2},BC = 6,∠C为锐角且tan C = 1.
(1)求△ABC的面积;
(2)求AB的值;
(3)求cos ∠ABC的值.

(1)求△ABC的面积;
(2)求AB的值;
(3)求cos ∠ABC的值.
答案:
【解】
(1)过点$A$作$AD\perp BC$,垂足为$D$,

则$\angle ADC = \angle ADB = 90^{\circ}$.
$\because\angle C$为锐角且$\tan C = 1$,$\therefore\angle C = 45^{\circ}$,
$\therefore\angle DAC = 90^{\circ} - \angle C = 45^{\circ}$,
$\therefore\angle DAC = \angle C = 45^{\circ}$,$\therefore AD = DC$.
在$Rt\triangle ACD$中,
$\because\sin C = \frac{AD}{AC}$,$AC = 4\sqrt{2}$,
$\therefore DC = AD = AC\cdot\sin C = 4\sqrt{2}\times\frac{\sqrt{2}}{2} = 4$.
$\because BC = 6$,
$\therefore S_{\triangle ABC} = \frac{1}{2}BC\cdot AD = \frac{1}{2}\times6\times4 = 12$.
(2)$\because DC = AD = 4$,$BC = 6$,
$\therefore BD = BC - DC = 6 - 4 = 2$.
在$Rt\triangle ABD$中,
$AB = \sqrt{AD^{2} + BD^{2}} = \sqrt{4^{2} + 2^{2}} = 2\sqrt{5}$.
(3)$\because$在$Rt\triangle ABD$中,$AB = 2\sqrt{5}$,$BD = 2$,
$\therefore\cos\angle ABC = \frac{BD}{AB} = \frac{2}{2\sqrt{5}} = \frac{\sqrt{5}}{5}$.
【解】
(1)过点$A$作$AD\perp BC$,垂足为$D$,
则$\angle ADC = \angle ADB = 90^{\circ}$.
$\because\angle C$为锐角且$\tan C = 1$,$\therefore\angle C = 45^{\circ}$,
$\therefore\angle DAC = 90^{\circ} - \angle C = 45^{\circ}$,
$\therefore\angle DAC = \angle C = 45^{\circ}$,$\therefore AD = DC$.
在$Rt\triangle ACD$中,
$\because\sin C = \frac{AD}{AC}$,$AC = 4\sqrt{2}$,
$\therefore DC = AD = AC\cdot\sin C = 4\sqrt{2}\times\frac{\sqrt{2}}{2} = 4$.
$\because BC = 6$,
$\therefore S_{\triangle ABC} = \frac{1}{2}BC\cdot AD = \frac{1}{2}\times6\times4 = 12$.
(2)$\because DC = AD = 4$,$BC = 6$,
$\therefore BD = BC - DC = 6 - 4 = 2$.
在$Rt\triangle ABD$中,
$AB = \sqrt{AD^{2} + BD^{2}} = \sqrt{4^{2} + 2^{2}} = 2\sqrt{5}$.
(3)$\because$在$Rt\triangle ABD$中,$AB = 2\sqrt{5}$,$BD = 2$,
$\therefore\cos\angle ABC = \frac{BD}{AB} = \frac{2}{2\sqrt{5}} = \frac{\sqrt{5}}{5}$.
查看更多完整答案,请扫码查看