2026年南方凤凰台5A新考案数学二轮提高版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年南方凤凰台5A新考案数学二轮提高版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第5页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
1. (人 A 必一 P218 例 3 改)若 $\alpha \in \left( \dfrac{\pi}{2}, \pi \right)$,$\sin \alpha = \dfrac{3}{5}$,则 $\tan \left( \alpha + \dfrac{\pi}{4} \right) =$ (
A.$\dfrac{1}{7}$
B.$7$
C.$- \dfrac{1}{7}$
D.$-7$
A
)A.$\dfrac{1}{7}$
B.$7$
C.$- \dfrac{1}{7}$
D.$-7$
答案:
1.A【解析】由$\alpha\in\left(\frac{\pi}{2},\pi\right),\sin\alpha=\frac{3}{5}$,得$\cos\alpha=-\frac{4}{5}$,所以
$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{3}{-4}=-\frac{3}{4}$,则$\tan\left(\alpha+\frac{\pi}{4}\right)=\frac{\tan\alpha + 1}{1 - \tan\alpha}=\frac{1}{7}$。
$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{3}{-4}=-\frac{3}{4}$,则$\tan\left(\alpha+\frac{\pi}{4}\right)=\frac{\tan\alpha + 1}{1 - \tan\alpha}=\frac{1}{7}$。
2. (2025·武汉 4 月调研)若 $\tan \left( \alpha + \dfrac{\pi}{4} \right) = 7$,则 $\cos 2 \alpha$ 的值为 (
A.$\dfrac{7}{25}$
B.$\dfrac{3}{4}$
C.$\dfrac{12}{25}$
D.$\dfrac{4}{5}$
A
)A.$\dfrac{7}{25}$
B.$\dfrac{3}{4}$
C.$\dfrac{12}{25}$
D.$\dfrac{4}{5}$
答案:
2.A【解析】方法一:由$\tan\left(\alpha+\frac{\pi}{4}\right)=7$,可得$\frac{\tan\alpha+\tan\frac{\pi}{4}}{1-\tan\alpha\tan\frac{\pi}{4}} =7$,即$\frac{\tan\alpha + 1}{1 - \tan\alpha}=7$,解得$\tan\alpha=\frac{3}{4}$,所以$\cos2\alpha=\frac{\cos^{2}\alpha-\sin^{2}\alpha}{\cos^{2}\alpha+\sin^{2}\alpha}=\frac{1-\tan^{2}\alpha}{1+\tan^{2}\alpha}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}=\frac{7}{25}$。
方法二:$\cos2\alpha=\sin\left(2\alpha+\frac{\pi}{2}\right)=2\sin\left(\alpha+\frac{\pi}{4}\right)\cos\left(\alpha+\frac{\pi}{4}\right)=\frac{2\sin\left(\alpha+\frac{\pi}{4}\right)\cos\left(\alpha+\frac{\pi}{4}\right)}{\sin^{2}\left(\alpha+\frac{\pi}{4}\right)+\cos^{2}\left(\alpha+\frac{\pi}{4}\right)}=\frac{2\tan\left(\alpha+\frac{\pi}{4}\right)}{\tan^{2}\left(\alpha+\frac{\pi}{4}\right)+1}=\frac{14}{49 + 1}=\frac{7}{25}$。
方法二:$\cos2\alpha=\sin\left(2\alpha+\frac{\pi}{2}\right)=2\sin\left(\alpha+\frac{\pi}{4}\right)\cos\left(\alpha+\frac{\pi}{4}\right)=\frac{2\sin\left(\alpha+\frac{\pi}{4}\right)\cos\left(\alpha+\frac{\pi}{4}\right)}{\sin^{2}\left(\alpha+\frac{\pi}{4}\right)+\cos^{2}\left(\alpha+\frac{\pi}{4}\right)}=\frac{2\tan\left(\alpha+\frac{\pi}{4}\right)}{\tan^{2}\left(\alpha+\frac{\pi}{4}\right)+1}=\frac{14}{49 + 1}=\frac{7}{25}$。
3. 已知 $\sin \left( \alpha - \dfrac{\pi}{6} \right) = \dfrac{1}{3}$,则 $\sin \left( 2 \alpha - \dfrac{\pi}{6} \right) + \cos 2 \alpha =$
$\frac{7}{9}$
.
答案:
3.$\frac{7}{9}$【解析】$\sin\left(2\alpha-\frac{\pi}{6}\right)+\cos2\alpha=\frac{\sqrt{3}}{2}\sin2\alpha+\frac{1}{2}\cos2\alpha=\sin\left(2\alpha+\frac{\pi}{6}\right)=\cos\left[\frac{\pi}{2}-\left(2\alpha+\frac{\pi}{6}\right)\right]=\cos\left(\frac{\pi}{3}-2\alpha\right)=\cos\left(2\alpha-\frac{\pi}{3}\right)=1 - 2\sin^{2}\left(\alpha-\frac{\pi}{6}\right)=1 - 2×\left(\frac{1}{3}\right)^{2}=\frac{7}{9}$。
4. (2024·新高考Ⅱ卷)已知 $\alpha$ 为第一象限角,$\beta$ 为第三象限角,$\tan \alpha + \tan \beta = 4$,$\tan \alpha \tan \beta = \sqrt{2} + 1$,则 $\sin ( \alpha + \beta ) =$
$-\frac{2\sqrt{2}}{3}$
.
答案:
4.$-\frac{2\sqrt{2}}{3}$【解析】方法一:由题意得$\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}=\frac{4}{1 - (\sqrt{2}+1)}=-2\sqrt{2}$。因为$\alpha\in\left(2k\pi,2k\pi+\frac{\pi}{2}\right),\beta\in\left(2m\pi+\pi,2m\pi+\frac{3\pi}{2}\right),k,m\in\mathbf{Z}$,所以$\alpha+\beta\in\left((2m + 2k)\pi+\pi,(2m+2k)\pi+2\pi\right),k,m\in\mathbf{Z}$。又$\tan(\alpha+\beta)=-2\sqrt{2}<0$,所以$\alpha+\beta\in\left((2m + 2k)\pi+\frac{3\pi}{2},(2m+2k)\pi+2\pi\right),k,m\in\mathbf{Z}$,则$\sin(\alpha+\beta)<0$。由$\frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)}=-2\sqrt{2}$,联立$\sin^{2}(\alpha+\beta)+\cos^{2}(\alpha+\beta)=1$,
解得$\sin(\alpha+\beta)=-\frac{2\sqrt{2}}{3}$。
方法二:因为$\alpha$为第一象限角,$\beta$为第三象限角,则$\cos\alpha>0$,
$\cos\beta<0$,$\cos\alpha=\frac{\cos\alpha}{\sqrt{\sin^{2}\alpha+\cos^{2}\alpha}}=\frac{1}{\sqrt{1+\tan^{2}\alpha}}$,$\cos\beta=\frac{\cos\beta}{\sqrt{\sin^{2}\beta+\cos^{2}\beta}}=\frac{-1}{\sqrt{1+\tan^{2}\beta}}$,则$\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta=\cos\alpha\cos\beta(\tan\alpha+\tan\beta)=4\cos\alpha\cos\beta=\frac{-4}{\sqrt{1+\tan^{2}\alpha}\sqrt{1+\tan^{2}\beta}}=\frac{-4}{\sqrt{4^{2}+2}}=\frac{2\sqrt{2}}{3}$。
解得$\sin(\alpha+\beta)=-\frac{2\sqrt{2}}{3}$。
方法二:因为$\alpha$为第一象限角,$\beta$为第三象限角,则$\cos\alpha>0$,
$\cos\beta<0$,$\cos\alpha=\frac{\cos\alpha}{\sqrt{\sin^{2}\alpha+\cos^{2}\alpha}}=\frac{1}{\sqrt{1+\tan^{2}\alpha}}$,$\cos\beta=\frac{\cos\beta}{\sqrt{\sin^{2}\beta+\cos^{2}\beta}}=\frac{-1}{\sqrt{1+\tan^{2}\beta}}$,则$\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta=\cos\alpha\cos\beta(\tan\alpha+\tan\beta)=4\cos\alpha\cos\beta=\frac{-4}{\sqrt{1+\tan^{2}\alpha}\sqrt{1+\tan^{2}\beta}}=\frac{-4}{\sqrt{4^{2}+2}}=\frac{2\sqrt{2}}{3}$。
例 1 已知 $2 \cos \left( 2 x + \dfrac{\pi}{12} \right) \cos \left( x - \dfrac{\pi}{12} \right) - \cos 3 x = \dfrac{1}{4}$,则 $\sin \left( \dfrac{\pi}{6} - 2 x \right) =$ (
A.$\dfrac{1}{2}$
B.$- \dfrac{1}{2}$
C.$\dfrac{7}{8}$
D.$- \dfrac{7}{8}$
D
)A.$\dfrac{1}{2}$
B.$- \dfrac{1}{2}$
C.$\dfrac{7}{8}$
D.$- \dfrac{7}{8}$
答案:
例1 D【解析】由已知得$2\cos\left(2x+\frac{\pi}{12}\right)\cos\left(x-\frac{\pi}{12}\right)-\cos\left[\left(2x+\frac{\pi}{12}\right)+\left(x-\frac{\pi}{12}\right)\right]=\frac{1}{4}$,化简得$\cos\left(2x+\frac{\pi}{12}\right)\cos\left(x-\frac{\pi}{12}\right)+\sin\left(2x+\frac{\pi}{12}\right)\sin\left(x-\frac{\pi}{12}\right)=\cos\left[\left(2x+\frac{\pi}{12}\right)-\left(x-\frac{\pi}{12}\right)\right]=\cos\left(x+\frac{\pi}{6}\right)=\frac{1}{4}$.令$t=x+\frac{\pi}{6}$,则$x=t-\frac{\pi}{6}$,$\cos t=\frac{1}{4}$,所以
$\sin\left(\frac{\pi}{6}-2x\right)=\sin\left[\frac{\pi}{6}-2\left(t-\frac{\pi}{6}\right)\right]=\sin\left(\frac{\pi}{2}-2t\right)=\cos2t=2\cos^{2}t - 1=2×\left(\frac{1}{4}\right)^{2}-1=-\frac{7}{8}$。
$\sin\left(\frac{\pi}{6}-2x\right)=\sin\left[\frac{\pi}{6}-2\left(t-\frac{\pi}{6}\right)\right]=\sin\left(\frac{\pi}{2}-2t\right)=\cos2t=2\cos^{2}t - 1=2×\left(\frac{1}{4}\right)^{2}-1=-\frac{7}{8}$。
查看更多完整答案,请扫码查看