2026年南方凤凰台5A新考案数学二轮提高版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年南方凤凰台5A新考案数学二轮提高版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第16页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
例1 如图,已知$P$是$\triangle ABC$内一点,$PB = PC$,$\angle BAC = \frac{\pi}{4}$,$\angle BPC = \frac{3\pi}{4}$,$\angle ABP = \theta$.
(1)若$\theta = \frac{\pi}{24}$,$BC = \sqrt{2}$,求$AC$的长;
(2)若$\theta = \frac{\pi}{3}$,求$\tan \angle BAP$的值.

(1)若$\theta = \frac{\pi}{24}$,$BC = \sqrt{2}$,求$AC$的长;
(2)若$\theta = \frac{\pi}{3}$,求$\tan \angle BAP$的值.
(1)1;(2)$3 - \sqrt{6}$
答案:
例1 [解答]
(1)如图
(1),在△BPC中,∠BPC = $\frac{3\pi}{4}$,PB = PC,所以∠PBC = $\frac{\pi}{8}$,所以∠ABC = ∠PBC + θ = $\frac{\pi}{8}$ + $\frac{\pi}{24}$ = $\frac{\pi}{6}$.在△ABC中,由正弦定理得$\frac{AC}{\sin\angle ABC}$ = $\frac{BC}{\sin\angle BAC}$,即$\frac{AC}{\frac{1}{2}}$ = $\frac{\sqrt{2}}{\frac{\sqrt{2}}{2}}$,解得AC = 1.

(2)如图
(2),当θ = $\frac{\pi}{3}$时,∠ACP = π - ∠BAC - ∠ABP - 2∠PBC = $\frac{\pi}{6}$.设∠BAP = α,则∠PAC = $\frac{\pi}{4}$ - α.在△ABP中,由正弦定理得$\frac{AP}{PB}$ = $\frac{\sin\frac{\pi}{3}}{\sin\alpha}$.在△APC中,由正弦定理得$\frac{AP}{PC}$ = $\frac{\sin(\frac{\pi}{4}-\alpha)}{\sin\frac{\pi}{6}}$.因为PB = PC,所以$\frac{\sin\frac{\pi}{3}}{\sin\alpha}$ = $\frac{\sin(\frac{\pi}{4}-\alpha)}{\sin\frac{\pi}{6}}$,即$\frac{\frac{\sqrt{3}}{2}}{\sin\alpha}$ = $\frac{\frac{\sqrt{2}}{2}(\cos\alpha - \sin\alpha)}{\frac{1}{2}}$,整理得$\frac{\sqrt{3}}{\sin\alpha}$ = $\frac{\sqrt{2}}{\cos\alpha - \sin\alpha}$,即$\frac{\sqrt{3}}{\tan\alpha}$ = $\frac{\sqrt{2}}{1 - \tan\alpha}$,解得tanα = 3 - $\sqrt{6}$,即tan∠BAP = 3 - $\sqrt{6}$.
例1 [解答]
(1)如图
(1),在△BPC中,∠BPC = $\frac{3\pi}{4}$,PB = PC,所以∠PBC = $\frac{\pi}{8}$,所以∠ABC = ∠PBC + θ = $\frac{\pi}{8}$ + $\frac{\pi}{24}$ = $\frac{\pi}{6}$.在△ABC中,由正弦定理得$\frac{AC}{\sin\angle ABC}$ = $\frac{BC}{\sin\angle BAC}$,即$\frac{AC}{\frac{1}{2}}$ = $\frac{\sqrt{2}}{\frac{\sqrt{2}}{2}}$,解得AC = 1.
(2)如图
(2),当θ = $\frac{\pi}{3}$时,∠ACP = π - ∠BAC - ∠ABP - 2∠PBC = $\frac{\pi}{6}$.设∠BAP = α,则∠PAC = $\frac{\pi}{4}$ - α.在△ABP中,由正弦定理得$\frac{AP}{PB}$ = $\frac{\sin\frac{\pi}{3}}{\sin\alpha}$.在△APC中,由正弦定理得$\frac{AP}{PC}$ = $\frac{\sin(\frac{\pi}{4}-\alpha)}{\sin\frac{\pi}{6}}$.因为PB = PC,所以$\frac{\sin\frac{\pi}{3}}{\sin\alpha}$ = $\frac{\sin(\frac{\pi}{4}-\alpha)}{\sin\frac{\pi}{6}}$,即$\frac{\frac{\sqrt{3}}{2}}{\sin\alpha}$ = $\frac{\frac{\sqrt{2}}{2}(\cos\alpha - \sin\alpha)}{\frac{1}{2}}$,整理得$\frac{\sqrt{3}}{\sin\alpha}$ = $\frac{\sqrt{2}}{\cos\alpha - \sin\alpha}$,即$\frac{\sqrt{3}}{\tan\alpha}$ = $\frac{\sqrt{2}}{1 - \tan\alpha}$,解得tanα = 3 - $\sqrt{6}$,即tan∠BAP = 3 - $\sqrt{6}$.
变式1-1 在平面四边形$ABCD$中,$AD = 1$,$AB = CD = 2$,$BC = 3$,且四边形$ABCD$的面积为$\sqrt{3}$,则$\cos(\angle ADC + \angle ABC) = $
$\frac{1}{2}$
.
答案:
变式1 - 1 $\frac{1}{2}$ [解析]如图,根据题意,连接AC,在△ADC中,AD = 1,DC = 2,由余弦定理得AC² = AD² + DC² - 2AD·DCcosD = 1 + 4 - 2×1×2cosD = 5 - 4cosD.在△ABC中,AB = 2,BC = 3,由余弦定理得AC² = AB² + BC² - 2AB·BC·cosB = 4 + 9 - 2×2×3cosB = 13 - 12cosB,所以5 - 4cosD = 13 - 12cosB,化简得cosD - 3cosB = - 2①.S四边形ABCD = S△ADC + S△ABC = $\frac{1}{2}$×1×2sinD + $\frac{1}{2}$×2×3sinB = $\sqrt{3}$,化简得sinD + 3sinB = $\sqrt{3}$②.由①² + ②²,可得(cosD - 3cosB)² + (sinD + 3sinB)² = 7,整理得(cos²D + sin²D) + 9(cos²B + sin²B) - 6(cosBcosD - sinBsinD) = 7,即10 - 6cos(B + D) = 7,解得cos(B + D) = $\frac{1}{2}$,即cos(∠ADC + ∠ABC) = $\frac{1}{2}$.
变式1 - 1 $\frac{1}{2}$ [解析]如图,根据题意,连接AC,在△ADC中,AD = 1,DC = 2,由余弦定理得AC² = AD² + DC² - 2AD·DCcosD = 1 + 4 - 2×1×2cosD = 5 - 4cosD.在△ABC中,AB = 2,BC = 3,由余弦定理得AC² = AB² + BC² - 2AB·BC·cosB = 4 + 9 - 2×2×3cosB = 13 - 12cosB,所以5 - 4cosD = 13 - 12cosB,化简得cosD - 3cosB = - 2①.S四边形ABCD = S△ADC + S△ABC = $\frac{1}{2}$×1×2sinD + $\frac{1}{2}$×2×3sinB = $\sqrt{3}$,化简得sinD + 3sinB = $\sqrt{3}$②.由①² + ②²,可得(cosD - 3cosB)² + (sinD + 3sinB)² = 7,整理得(cos²D + sin²D) + 9(cos²B + sin²B) - 6(cosBcosD - sinBsinD) = 7,即10 - 6cos(B + D) = 7,解得cos(B + D) = $\frac{1}{2}$,即cos(∠ADC + ∠ABC) = $\frac{1}{2}$.
变式1-2 (2025·襄阳模拟)在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$,$BC = 1$且$b\cos C + \sqrt{3}c\sin B = 1 + 2c$.
(1)求角$B$的大小;
(2)如图,$D$为$\triangle ABC$外一点,$\angle DCB = \angle B$,$CD = \sqrt{3}$,$AC = AD$,求$\sin \angle BCA$的值.

(1)求角$B$的大小;
(2)如图,$D$为$\triangle ABC$外一点,$\angle DCB = \angle B$,$CD = \sqrt{3}$,$AC = AD$,求$\sin \angle BCA$的值.
(1)$120^{\circ}$;(2)$\frac{\sqrt{2}}{2}$
答案:
变式1 - 2 [解答]
(1)因为bcosC + $\sqrt{3}c\sin B$ = 1 + 2c = a + 2c,所以在△ABC中,由正弦定理得sinBcosC + $\sqrt{3}\sin C\sin B$ = sinA + 2sinC,由三角形内角和为180°可得sinA = sin(B + C) = sin B·cosC + cosBsinC,所以sinBcosC + $\sqrt{3}\sin C\sin B$ = sin(B + C) + 2sinC = sinB·cosC + cosBsinC + 2sinC,即$\sqrt{3}\sin C\sin B$ - cosBsinC = 2sinC,因为0° < C < 180°,所以sinC ≠ 0,所以$\sqrt{3}\sin B$ - cosB = 2,即$\frac{\sqrt{3}}{2}\sin B$ - $\frac{1}{2}\cos B$ = 1,所以sin(B - 30°) = 1,又因为0° < B < 180°,所以B - 30° = 90°,即B = 120°.
(2)因为AC = AD,令∠DCA = ∠CDA = α,则∠CAD = 180° - 2α,在△ACD中,由正弦定理得$\frac{AC}{\sin D}$ = $\frac{CD}{\sin\angle CAD}$,又CD = $\sqrt{3}$,所以AC = $\frac{\sqrt{3}\sin\alpha}{\sin(180^{\circ}-2\alpha)}$ = $\frac{\sqrt{3}}{2\cos\alpha}$.在△ABC中,由正弦定理得$\frac{AC}{\sin B}$ = $\frac{BC}{\sin\angle BAC}$,又∠BAC = 180° - 120° - (120° - α) = α - 60°,BC = 1,所以AC = $\frac{\sin120^{\circ}}{\sin(\alpha-60^{\circ})}$,所以sin(α - 60°) = cosα = sin(90° - α),解得α = 75°,所以sin∠BCA = sin(120° - 75°) = $\frac{\sqrt{2}}{2}$.
(1)因为bcosC + $\sqrt{3}c\sin B$ = 1 + 2c = a + 2c,所以在△ABC中,由正弦定理得sinBcosC + $\sqrt{3}\sin C\sin B$ = sinA + 2sinC,由三角形内角和为180°可得sinA = sin(B + C) = sin B·cosC + cosBsinC,所以sinBcosC + $\sqrt{3}\sin C\sin B$ = sin(B + C) + 2sinC = sinB·cosC + cosBsinC + 2sinC,即$\sqrt{3}\sin C\sin B$ - cosBsinC = 2sinC,因为0° < C < 180°,所以sinC ≠ 0,所以$\sqrt{3}\sin B$ - cosB = 2,即$\frac{\sqrt{3}}{2}\sin B$ - $\frac{1}{2}\cos B$ = 1,所以sin(B - 30°) = 1,又因为0° < B < 180°,所以B - 30° = 90°,即B = 120°.
(2)因为AC = AD,令∠DCA = ∠CDA = α,则∠CAD = 180° - 2α,在△ACD中,由正弦定理得$\frac{AC}{\sin D}$ = $\frac{CD}{\sin\angle CAD}$,又CD = $\sqrt{3}$,所以AC = $\frac{\sqrt{3}\sin\alpha}{\sin(180^{\circ}-2\alpha)}$ = $\frac{\sqrt{3}}{2\cos\alpha}$.在△ABC中,由正弦定理得$\frac{AC}{\sin B}$ = $\frac{BC}{\sin\angle BAC}$,又∠BAC = 180° - 120° - (120° - α) = α - 60°,BC = 1,所以AC = $\frac{\sin120^{\circ}}{\sin(\alpha-60^{\circ})}$,所以sin(α - 60°) = cosα = sin(90° - α),解得α = 75°,所以sin∠BCA = sin(120° - 75°) = $\frac{\sqrt{2}}{2}$.
查看更多完整答案,请扫码查看