2026年南方凤凰台5A新考案数学二轮提高版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年南方凤凰台5A新考案数学二轮提高版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年南方凤凰台5A新考案数学二轮提高版》

1. 求证:$\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+·s+\frac{1}{4n^{2}}<\frac{1}{2}-\frac{1}{4n}(n\geq2,n\in\mathbf{N}^{*})$。
答案: 1.【解答】因为 $n \geq 2, n \in \mathbf{N}^*$ 时,$\frac{1}{n^2} < \frac{1}{n(n - 1)} = \frac{1}{n - 1} - \frac{1}{n}$,所以
$\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + ·s + \frac{1}{4n^2} < \frac{1}{4} \left( 1^2 + \frac{1}{2^2} + \frac{1}{3^2} + ·s + \frac{1}{n^2} \right) < \frac{1}{4} \left( 1^2 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ·s + \frac{1}{n - 1} - \frac{1}{n} \right) = \frac{1}{4} \left( 2 - \frac{1}{n} \right) = \frac{1}{2} - \frac{1}{4n}$,
所以 $\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + ·s + \frac{1}{4n^2} < \frac{1}{2} - \frac{1}{4n} \quad (n \geq 2, n \in \mathbf{N}^*)$。
2. 设数列$\{ a_{n}\}$的前$n$项积$T_{n}=\frac{1}{2^{n + 1}-1}$,前$n$项和为$S_{n}$,求证:$S_{n}>\frac{n}{2}-\frac{1}{2}+(\frac{1}{2})^{n + 1}$。
答案: 2.【解答】由 $T_n = \frac{1}{2^{n + 1} - 1}$,可得当 $n \geq 2$ 时,$a_n = \frac{T_n}{T_{n - 1}} = \frac{2^n - 1}{2^{n + 1} - 1}$,又当 $n = 1$ 时,$a_1 = T_1 = \frac{1}{3}$,也满足此式,所以 $a_n = \frac{2^n - 1}{2^{n + 1} - 1} > \frac{2^n - 1}{2^{n + 1}} = \frac{1}{2} - \frac{1}{2^{n + 1}}$,所以 $S_n > \left( \frac{1}{2} - \frac{1}{2^2} \right) + \left( \frac{1}{2} - \frac{1}{2^3} \right) + ·s + \left( \frac{1}{2} - \frac{1}{2^{n + 1}} \right) = \frac{n}{2} - \frac{\frac{1}{4} \left[ 1 - \left( \frac{1}{2} \right)^n \right]}{1 - \frac{1}{2}} = \frac{n}{2} - \frac{1}{2} + \left( \frac{1}{2} \right)^{n + 1}$。
例 1 - 1 已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,$a_{1}=2$,$(n - 2)S_{n + 1}+2a_{n + 1}=nS_{n}$,$n\in\mathbf{N}^{*}$。
(1)求数列$\{ a_{n}\}$的通项公式;
(2)求证:$\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}}+·s+\frac{1}{a_{n}^{2}}<\frac{7}{16}$。
答案: 例1-1 【解答】
(1) 由 $(n - 2)S_{n + 1} + 2a_{n + 1} = nS_n$,得 $(n - 2) · S_{n + 1} + 2(S_{n + 1} - S_n) = nS_n$,整理得 $nS_{n + 1} = (n + 2)S_n$,故 $\frac{S_{n + 1}}{(n + 1)(n + 2)} = \frac{S_n}{n(n + 1)}$,所以 $\left\{ \frac{S_n}{n(n + 1)} \right\}$ 是常数列,且 $\frac{S_n}{n(n + 1)} = \frac{S_1}{1 × 2} = 1$,故 $S_n = n(n + 1)$。当 $n \geq 2$ 时,$a_n = S_n - S_{n - 1} = n(n + 1) - n(n - 1) = 2n$,当 $n = 1$ 时也满足此式,故 $a_n = 2n$。
(2) 方法一:$\frac{1}{a_n^2} = \frac{1}{4n^2} < \frac{1}{4n^2 - 1} = \frac{1}{2} \left( \frac{1}{2n - 1} - \frac{1}{2n + 1} \right)$,故当 $n \geq 2$
时,$\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} < \frac{1}{4} + \frac{1}{2} \left( \frac{1}{3} + \frac{1}{5} - \frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = \frac{1}{4} + \frac{1}{2} \left( \frac{1}{3} - \frac{1}{2n - 1} \right) - \frac{1}{2} \left( \frac{1}{5} + \frac{1}{2n + 1} \right) = \frac{5}{12} - \frac{1}{2} \left( \frac{1}{2n - 1} + \frac{1}{2n + 1} \right) < \frac{5}{12} < \frac{7}{16}$。又 $\frac{1}{a_1^2} = \frac{1}{4} < \frac{7}{16}$,故 $\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} < \frac{7}{16}$。
方法二:当 $n \geq 3$ 时,$\frac{1}{a_n^2} = \frac{1}{4n^2} < \frac{1}{4} × \frac{1}{n(n - 1)} = \frac{1}{4} \left( \frac{1}{n - 1} - \frac{1}{n} \right)$,所以 $\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} < \frac{5}{16} + \frac{1}{4} \left( \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ·s + \frac{1}{n - 1} - \frac{1}{n} \right) = \frac{5}{16} + \frac{1}{4} \left( \frac{1}{2} - \frac{1}{n} \right) = \frac{7}{16} - \frac{1}{4n} < \frac{7}{16}$。当 $n = 1, 2$ 时也成立,所以 $\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} < \frac{7}{16}$。
方法三:由于 $\frac{1}{n^2} < \frac{1}{n^2 - 1} (n \geq 2)$,当 $n \geq 2$ 时,$\frac{1}{a_n^2} = \frac{1}{4n^2} < \frac{1}{4} × \frac{1}{n^2 - 1} = \frac{1}{4} × \frac{1}{2} \left( \frac{1}{n - 1} - \frac{1}{n + 1} \right)$,所以 $\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} < \frac{1}{4} + \frac{1}{4} × \frac{1}{2} \left( 1 - \frac{1}{3} + \frac{1}{2} + \frac{1}{4} - \frac{1}{3} - \frac{1}{5} + ·s + \frac{1}{n - 1} - \frac{1}{n + 1} \right) = \frac{1}{4} + \frac{1}{8} \left( 1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{n + 1} \right) = \frac{7}{16} - \frac{1}{8} \left( \frac{1}{n} + \frac{1}{n + 1} \right) < \frac{7}{16}$ 当 $n = 1$ 时也成立,所以 $\frac{1}{a_1^2} + \frac{1}{a_2^2} + ·s + \frac{1}{a_n^2} < \frac{7}{16}$。

查看更多完整答案,请扫码查看

关闭