2026年南方凤凰台5A新考案数学二轮提高版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年南方凤凰台5A新考案数学二轮提高版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第15页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
1. 在$\triangle ABC$中,$\angle B = 45^{\circ}$,$D$是$BC$边上一点,$AD = 5$,$AC = 7$,$DC = 3$,则$AB$的长为(
A.$5\sqrt{2}$
B.$3\sqrt{6}$
C.$\frac{5\sqrt{6}}{2}$
D.$4\sqrt{3}$
C
)A.$5\sqrt{2}$
B.$3\sqrt{6}$
C.$\frac{5\sqrt{6}}{2}$
D.$4\sqrt{3}$
答案:
1.C [解析]如图所示,在△ADC中,AD = 5,AC = 7,DC = 3,由余弦定理得cos∠ADC = $\frac{AD^{2}+DC^{2}-AC^{2}}{2AD· DC}$ = $\frac{25 + 9 - 49}{2×5×3}$ = -$\frac{1}{2}$,所以∠ADC = 120°,∠ADB = 60°.在△ABD中,AD = 5,∠B = 45°,∠ADB = 60°,由正弦定理得$\frac{AB}{\sin\angle ADB}$ = $\frac{AD}{\sin B}$,所以AB = $\frac{5×\sin60^{\circ}}{\sin45^{\circ}}$ = $\frac{5\sqrt{6}}{2}$.
1.C [解析]如图所示,在△ADC中,AD = 5,AC = 7,DC = 3,由余弦定理得cos∠ADC = $\frac{AD^{2}+DC^{2}-AC^{2}}{2AD· DC}$ = $\frac{25 + 9 - 49}{2×5×3}$ = -$\frac{1}{2}$,所以∠ADC = 120°,∠ADB = 60°.在△ABD中,AD = 5,∠B = 45°,∠ADB = 60°,由正弦定理得$\frac{AB}{\sin\angle ADB}$ = $\frac{AD}{\sin B}$,所以AB = $\frac{5×\sin60^{\circ}}{\sin45^{\circ}}$ = $\frac{5\sqrt{6}}{2}$.
2. 如图,在四边形$ABCD$中,$AC \perp BC$,$AB = 4$,$BC = CD$,$\angle ACD = 60^{\circ}$,则$AD$长的最小值为(

A.$2$
B.$\sqrt{6}$
C.$2\sqrt{2}$
D.$2\sqrt{3}$
C
)A.$2$
B.$\sqrt{6}$
C.$2\sqrt{2}$
D.$2\sqrt{3}$
答案:
2.C [解析]设∠BAC = α,则α∈(0,$\frac{\pi}{2}$),AC = 4cosα,CD = BC = 4sinα,则在△ACD中利用余弦定理得,AD = $\sqrt{AC^{2}+CD^{2}-2AC· CD·\cos60^{\circ}}$ = $\sqrt{16 - 8\sin2\alpha}$,当sin2α = 1,即α = $\frac{\pi}{4}$时,AD取得最小值2$\sqrt{2}$.
3. 在$\triangle ABC$中,$\angle ACB = \frac{2\pi}{3}$,$D$为$AB$上一点,$CD \perp AC$,$AD = 2DB = 2$,则$\triangle ABC$的面积为(
A.$\frac{\sqrt{3}}{2}$
B.$\frac{3\sqrt{3}}{4}$
C.$\frac{3}{4}$
D.$\frac{3}{2}$
B
)A.$\frac{\sqrt{3}}{2}$
B.$\frac{3\sqrt{3}}{4}$
C.$\frac{3}{4}$
D.$\frac{3}{2}$
答案:
3.B [解析]根据∠ACB = $\frac{2\pi}{3}$,CD⊥AC,可得∠BCD = $\frac{2\pi}{3}$ - $\frac{\pi}{2}$ = $\frac{\pi}{6}$.在△ABC中,设角A,B,C的对边分别为a,b,c,可得$\frac{AD}{BD}$ = $\frac{S_{\triangle ACD}}{S_{\triangle BCD}}$ = $\frac{\frac{1}{2}b· CD}{\frac{1}{2}a· CD\sin\angle BCD}$ = 2,结合sin∠BCD = $\frac{1}{2}$,化简得a = b.根据余弦定理,可得c² = a² + b² - 2abcos$\frac{2\pi}{3}$ = a² + b² + ab = 3a²,因为AD = 2DB = 2,所以DB = 1,可得c = AD + DB = 3,所以3a² = c² = 9,解得a = $\sqrt{3}$,即a = b = $\sqrt{3}$,所以△ABC的面积S = $\frac{1}{2}ab\sin\angle ACB$ = $\frac{1}{2}$×$\sqrt{3}$×$\sqrt{3}$×sin$\frac{2\pi}{3}$ = $\frac{3\sqrt{3}}{4}$.
3.B [解析]根据∠ACB = $\frac{2\pi}{3}$,CD⊥AC,可得∠BCD = $\frac{2\pi}{3}$ - $\frac{\pi}{2}$ = $\frac{\pi}{6}$.在△ABC中,设角A,B,C的对边分别为a,b,c,可得$\frac{AD}{BD}$ = $\frac{S_{\triangle ACD}}{S_{\triangle BCD}}$ = $\frac{\frac{1}{2}b· CD}{\frac{1}{2}a· CD\sin\angle BCD}$ = 2,结合sin∠BCD = $\frac{1}{2}$,化简得a = b.根据余弦定理,可得c² = a² + b² - 2abcos$\frac{2\pi}{3}$ = a² + b² + ab = 3a²,因为AD = 2DB = 2,所以DB = 1,可得c = AD + DB = 3,所以3a² = c² = 9,解得a = $\sqrt{3}$,即a = b = $\sqrt{3}$,所以△ABC的面积S = $\frac{1}{2}ab\sin\angle ACB$ = $\frac{1}{2}$×$\sqrt{3}$×$\sqrt{3}$×sin$\frac{2\pi}{3}$ = $\frac{3\sqrt{3}}{4}$.
4. 如图,无人机在离地面高$100\ m$的$A$处,观测到山顶$M$处的仰角为$15^{\circ}$,山脚$C$处的俯角为$45^{\circ}$.已知$\angle MCN = 60^{\circ}$,则山的高度$MN$为(

A.$100\sqrt{2}\ m$
B.$150\ m$
C.$150\sqrt{2}\ m$
D.$150\sqrt{3}\ m$
B
)A.$100\sqrt{2}\ m$
B.$150\ m$
C.$150\sqrt{2}\ m$
D.$150\sqrt{3}\ m$
答案:
4.B [解析]由题知,∠MAD = 15°,∠CAD = 45°,在Rt△ACE中,易知∠CAE = 45°,AE = 100m,所以AC = 100$\sqrt{2}$m.又因为∠CAM = ∠CAD + ∠MAD = 45° + 15° = 60°,∠MCN = 60°,所以∠MCA = 75°,∠CMA = 45°.在△ACM中,由正弦定理得$\frac{AC}{\sin\angle CMA}$ = $\frac{CM}{\sin\angle CAM}$,即$\frac{100\sqrt{2}}{\sin45^{\circ}}$ = $\frac{CM}{\sin60^{\circ}}$,所以CM = 100$\sqrt{3}$m.在Rt△MNC中,MN = CMsin∠MCN = 100$\sqrt{3}$×$\frac{\sqrt{3}}{2}$ = 150(m).
查看更多完整答案,请扫码查看