2025年综合应用创新题典中点九年级数学下册冀教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年综合应用创新题典中点九年级数学下册冀教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年综合应用创新题典中点九年级数学下册冀教版》

8. 如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD分别交AM,BN于点D,C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)若AD = 4,BC = 9,求⊙O的半径R.
答案:
(1)【证明】过点O作OE⊥CD于点E.
∵AM切⊙O于点A,
∴OA⊥AD.

∵DO平分∠ADC,
∴OE = OA.
∵OA是⊙O的半径,
∴OE是⊙O的半径.
∴CD是⊙O的切线.
(2)【解】过点D作DF⊥BC于点F.
∵AM,BN分别切⊙O于点A,B,
∴AB⊥AD,AB⊥BC.
∴四边形ABFD是矩形.
∴BF = AD = 4,AB = DF.
∵BC = 9,
∴FC = 9 - 4 = 5.
∵AM,BN,DC分别切⊙O于点A,B,E,
∴DA = DE,CB = CE.
∴DC = DE + CE = AD + BC = 4 + 9 = 13.
在Rt△DFC中,DC² = DF² + FC²,
∴DF = $\sqrt{DC² - FC²}$ = $\sqrt{13² - 5²}$ = 12.
∴AB = 12,
∴⊙O的半径R是6.
9. 如图①,在四边形ABCD中,∠A = ∠B = 90°,AD + BC = CD,以AB为直径作⊙O.
(1)求证:CD与⊙O相切;
(2)如图②,若CD切⊙O于点E,连接OE,AC,OE与AC交于点F,若FC = 2AF,求BC/AD的值.
答案:

(1)【证明】如图①,连接CO并延长,与DA的延长线交于点H,过点O作OE⊥CD于点E,

易知∠OAH = ∠ABC = 90°,

∵∠AOH = ∠BOC,AO = BO,
∴△AOH≌△BOC(ASA).
∴AH = BC,HO = CO.
∵AD + BC = CD,
∴AH + AD = HD = CD.
∴∠H = ∠DCH.

∵∠OAH = ∠OEC = 90°,HO = CO,
∴△AHO≌△ECO(AAS).
∴AO = OE.
∴OE为⊙O的半径.
∵OE⊥CD.
∴CD与⊙O相切.
(2)【解】如图②,作CT⊥BC交OE的延长线于点T,连接AT.则∠TCB = 90°.
∴∠B + ∠TCB = 180°,
∴AB//CT.
∴易得△AFO∽△CFT.
∴$\frac{CF}{AF}$ = $\frac{CT}{AO}$ = 2.

∴CT = 2OA.
∵AB = 2OA,
∴CT = AB.
∴四边形ABCT是平行四边形.
∵∠B = 90°,
∴四边形ABCT是矩形.
∴∠ATC = 90°,AT//BC,AT = BC.
易知AD//BC,
∴A,D,T三点共线.
∵CD是⊙O的切线,∠A = ∠B = 90°,
∴OT⊥CD,DA = DE,CB = CE.
∴∠DET = ∠DTC = 90°.

∵∠TDE = ∠CDT,
∴△DTE∽△DCT.
∴$\frac{TD}{CD}$ = $\frac{DE}{DT}$.
∴TD² = DE·DC.
设AD = DE = x,CB = CE = AT = y,则DT = AT - AD = y - x,CD = DE + CE = x + y.
∴(y - x)² = x(x + y),整理,得y² = 3xy,
∵y≠0,
∴y = 3x.
∴$\frac{BC}{AD}$ = $\frac{y}{x}$ = 3.

查看更多完整答案,请扫码查看

关闭