2025年小题狂做高中数学选择性必修第三册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学选择性必修第三册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



1. [2025 江西新九校协作体联考]$(x^{5}-2)\left(x^{2}-\frac{2}{x^{3}}\right)^{5}$的展开式中常数项为
(
C
)

A.$- 80$
B.80
C.$-160$
D.160
答案: 1.C 因为$(x^{5}-2)\left(x^{2}-\frac{2}{x^{3}}\right)^{5}=x^{5}\left(x^{2}-\frac{2}{x^{3}}\right)^{5}-2\left(x^{2}-\frac{2}{x^{3}}\right)^{5}$,其中$\left(x^{2}-\frac{2}{x^{3}}\right)^{5}$展开式的通项为$T_{r + 1} = C_{5}^{r}\left(x^{2}\right)^{5 - r}\left(-\frac{2}{x^{3}}\right)^{r}=(-2)^{r}C_{5}^{r}x^{10 - 5r}(0\leq r\leq5$且$r\in N)$,所以展开式中常数项为$x^{5}·(-2)^{3}C_{5}^{3}x^{-5}-2×(-2)^{2}C_{5}^{2}x^{0}=-160$。
2. [2024 河北任丘一中开学考试]若$(1 + 2x)^{2}(1 - x)^{5} = a_{0} + a_{1}x + a_{2}x^{2} + ·s + a_{7}x^{7}$,$a_{2} + a_{4} + a_{6} =$
(
C
)

A.32
B.16
C.15
D.0
答案: 2.C 令$x = - 1$,得$(1 - 2)^{2}(1 + 1)^{5}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+a_{6}-a_{7}=32$;令$x = 1$,得$(1 + 2)^{2}(1 - 1)^{5}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=0$。两式相加得$a_{0}+a_{2}+a_{4}+a_{6}=16$。令$x = 0$,得到$a_{0}=1$。所以$a_{2}+a_{4}+a_{6}=15$。
方法总结:若$f(x)=a_{0}+a_{1}x + a_{2}x^{2}+·s+a_{n}x^{n}(n$为奇数$)$,则$a_{0}=f(0),a_{0}+a_{1}+a_{2}+·s+a_{n}=f(1),a_{0}+a_{2}+a_{4}+a_{6}+·s+a_{n - 1}=\frac{f(1)+f(-1)}{2},a_{1}+a_{3}+a_{5}+a_{7}+·s+a_{n}=\frac{f(1)-f(-1)}{2}$。
3. [2024 江苏镇江八校期末联考]在$(1 + x)^{2} + (1 + x)^{3} + ·s + (1 + x)^{9}$展开式中,含$x^{2}$的项的系数是
(
A
)

A.120
B.56
C.84
D.35
答案: 3.A 因为$(1 + x)^{n}$展开式的通项为$T_{r + 1}=C_{n}^{r}x^{r}(0\leq r\leq n$且$r\in N)$,所以$(1 + x)^{2}+(1 + x)^{3}+·s+(1 + x)^{9}$的展开式中,含$x^{2}$的项的系数是$C_{2}^{2}+C_{3}^{2}+C_{4}^{2}+·s+C_{9}^{2}=C_{3}^{3}+C_{3}^{2}+C_{4}^{2}+·s+C_{9}^{2}=C_{4}^{3}+C_{4}^{2}+·s+C_{9}^{2}=·s=C_{9}^{3}+C_{9}^{2}=C_{10}^{3}=120$。
4. $(x + 2y - 3z)^{5}$的展开式中所有不含$x$的项的系数之和为
(
B
)

A.$-32$
B.$-1$
C.1
D.243
答案: 4.B $(x + 2y - 3z)^{5}=[(2y - 3z)+x]^{5}$展开式的通项公式为$T_{r + 1}=C_{5}^{r}(2y - 3z)^{5 - r}x^{r},r\in N,r\leq5$。为求展开式中不含$x$的项,则令$r = 0$,此时符合条件的项为$(2y - 3z)^{5}$展开式中的所有项,令$y = z = 1$,得这些项的系数之和为$(-1)^{5}=-1$。
方法总结:求不含$x$的项相当于直接令$x = 0$。
5. 若$(1 + 2x)^{4} = a_{0} - 2a_{1}x + 4a_{2}x^{2} - 8a_{3}x^{3} + 16a_{4}x^{4}$,则$a_{1} + a_{2} + a_{3} + a_{4} =$
(
B
)

A.0
B.$-1$
C.81
D.80
答案: 5.B 由题得$[1-(-2x)]^{4}=a_{0}+a_{1}(-2x)+a_{2}(-2x)^{2}+a_{3}(-2x)^{3}+a_{4}(-2x)^{4}$,设$t = - 2x$,则$(1 - t)^{4}=a_{0}+a_{1}t + a_{2}t^{2}+a_{3}t^{3}+a_{4}t^{4}$,令$t = 1$,则$a_{0}+a_{1}+a_{2}+a_{3}+a_{4}=(1 - 1)^{4}=0$,令$t = 0$,则$a_{0}=(1 - 0)^{4}=1$,所以$a_{1}+a_{2}+a_{3}+a_{4}=0 - a_{0}=-1$。
6. [多选题][2025 福建泉州期末]已知$(1 + 2x)^{9} = a_{0} + a_{1}x + a_{2}x^{2} + ·s + a_{9}x^{9}$,则 (
ABD
)

A.$a_{2} = 144$
B.$a_{i}(i = 0,1,2,·s,8,9)$的最大值为$a_{5}$
C.$a_{1} + a_{3} + a_{7} + a_{9} = a_{0} + a_{2} + a_{4} + a_{6} + a_{8} = 2^{8}$
D.$\frac{a_{2}}{2^{2}} + \frac{a_{4}}{2^{4}} + \frac{a_{6}}{2^{6}} + \frac{a_{8}}{2^{8}} = 255$
答案: 6.ABD $(1 + 2x)^{9}$展开式的通项为$T_{r + 1}=C_{9}^{r}(2x)^{r}=2^{r}· C_{9}^{r}x^{r},r\in N,r\leq9$。对于A,$a_{2}=2^{2}C_{9}^{2}=144$,故A正确;对于B,当$i\in N,i\leq8$时,$\frac{a_{i + 1}}{a_{i}}=\frac{2^{i + 1}C_{9}^{i + 1}}{2^{i}C_{9}^{i}}=\frac{2(9 - i)}{i + 1}\geq1$,解得$i\leq\frac{17}{3}$,当$i>\frac{17}{3}$时,$\frac{a_{i + 1}}{a_{i}}<1$,所以$a_{0}<a_{1}<·s<a_{6}$且$a_{6}>a_{7}>a_{8}>a_{9}$,即$a_{i}$的最大值为$a_{6}$,故B正确;对于C,当$x$分别取$\pm1$时,可得$\begin{cases}a_{0}+a_{1}+a_{2}+·s+a_{9}=3^{9}\\a_{0}-a_{1}+a_{2}-·s - a_{9}=1\end{cases}$,两式相加得$a_{0}+a_{2}+a_{4}+a_{6}+a_{8}=\frac{3^{9}-1}{2}$,故C错误;对于D,当$x$分别取$\pm\frac{1}{2}$时,可得$\begin{cases}a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{2^{2}}+·s+\frac{a_{9}}{2^{9}}=2^{9}\\a_{0}-\frac{a_{1}}{2}+\frac{a_{2}}{2^{2}}-·s+\frac{a_{9}}{2^{9}}=0\end{cases}$,两式相加得$\frac{a_{2}}{2^{2}}+\frac{a_{4}}{2^{4}}+\frac{a_{6}}{2^{6}}+\frac{a_{8}}{2^{8}}=255$,故D正确。
7. [多选题][2025 山东泰安期中]对一个量用两种方法分别算一次,由结果相同构造等式,这种方法被称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.例如:考查恒等式$(1 + x)^{2n} = (1 + x)^{n}(1 + x)^{n}(n \in \mathbf{N}^{*})$,左边$x^{n}$的系数为$C_{2n}^{n}$,而右边$(1 + x)^{n}(1 + x)^{n} = \left( C_{n}^{0} + C_{n}^{1}x + ·s + C_{n}^{n}x^{n} \right)\left( C_{n}^{0} + C_{n}^{1}x + ·s + C_{n}^{n}x^{n} \right)$,$x^{n}$的系数为$C_{n}^{0}C_{n}^{n} + C_{n}^{1}C_{n}^{n - 1} + ·s + C_{n}^{n}C_{n}^{0} = \left( C_{n}^{0} \right)^{2} + \left( C_{n}^{1} \right)^{2} + ·s + \left( C_{n}^{n} \right)^{2}$,可得到组合数恒等式$C_{2n}^{n} = \left( C_{n}^{0} \right)^{2} + \left( C_{n}^{1} \right)^{2} + ·s + \left( C_{n}^{n} \right)^{2}$.利用“算两次”的思想方法或其他方法,得出了下面有关组合数的等式,其中正确的是
(
ABD
)

A.$C_{2025}^{100} = C_{1000}^{0}C_{10025}^{100} + C_{1000}^{1}C_{10025}^{99} + C_{1000}^{2}C_{10025}^{98} + ·s + C_{1000}^{100}C_{10025}^{0}$
B.$C_{n}^{k} · C_{m - k}^{n - k} = C_{m}^{n} · C_{n}^{k}$
C.$\sum_{k = 1}^{2n}( - 1)^{k}\left( C_{2n}^{k} \right)^{2} = ( - 1)^{n}C_{2n}^{n}$
D.$\sum_{k = 1}^{n}\left( C_{2n}^{2k - 1} \right)^{2} = \frac{1}{2}\left[ C_{2n}^{n} + ( - 1)^{n - 1}C_{2n}^{n} \right]$
答案: 7.ABD 对于A,$(1 + x)^{1000 + 1025}=(1 + x)^{1000}(1 + x)^{1025}$,左边$x^{100}$的系数为$C_{2025}^{100}$,又由$(1 + x)^{1000}(1 + x)^{1025}=(C_{1000}^{0}+C_{1000}^{1}x+·s+C_{1000}^{1000}x^{1000})(C_{1025}^{0}+C_{1025}^{1}x+·s+C_{1025}^{1025}x^{1025})$,故$x^{100}$的系数为$C_{1000}^{0}C_{1025}^{100}+C_{1000}^{1}C_{1025}^{99}+C_{1000}^{2}C_{1025}^{98}+·s+C_{1000}^{1000}C_{1025}^{0}$,故$C_{2025}^{100}=C_{1000}^{0}C_{1025}^{100}+C_{1000}^{1}C_{1025}^{99}+C_{1000}^{2}C_{1025}^{98}+·s+C_{1000}^{1000}C_{1025}^{0}$,故A正确;对于B,$C_{n}^{k}· C_{m - k}^{n - k}=\frac{n!}{k!(n - k)!}·\frac{(m - k)!}{(n - k)!(m - n)!}=C_{m}^{n}· C_{n}^{k}$,故B正确;对于C,$(1 - x)^{2n}(1 + x)^{2n}=(1 - x^{2})^{2n}$,$(1 - x)^{2n}·(1 + x)^{2n}=(C_{2n}^{0}-C_{2n}^{1}x + C_{2n}^{2}x^{2}-·s - C_{2n}^{2n - 1}x^{2n - 1}+C_{2n}^{2n}x^{2n})·(C_{2n}^{0}+C_{2n}^{1}x + C_{2n}^{2}x^{2}+·s+C_{2n}^{2n - 1}x^{2n - 1}+C_{2n}^{2n}x^{2n})$,左边$x^{2n}$的系数为$\sum_{k = 0}^{2n}(-1)^{k}C_{2n}^{k}· C_{2n}^{2n - k}=\sum_{k = 0}^{2n}(-1)^{k}(C_{2n}^{k})^{2}$,右边$x^{2n}$的系数为$(-1)^{n}C_{2n}^{n}$,故$\sum_{k = 0}^{2n}(-1)^{k}(C_{2n}^{k})^{2}=(-1)^{n}C_{2n}^{n}$,故C错误;对于D,由题意得$(C_{n}^{0})^{2}+(C_{n}^{1})^{2}+·s+(C_{n}^{n})^{2}=C_{2n}^{n}$,则$\sum_{k = 0}^{2n}(C_{2k}^{1})^{2}+\sum_{k = 0}^{2n}(C_{2k}^{2})^{2}+·s+\sum_{k = 0}^{2n}(C_{2k}^{2k})^{2}=C_{2n}^{n}$①,由C可知,$\sum_{k = 0}^{2n}(-1)^{k}(C_{2n}^{k})^{2}=(-1)^{n}C_{2n}^{n}$,即$-\sum_{k = 1}^{2n}(C_{2n}^{k - 1})^{2}+\sum_{k = 0}^{2n}(C_{2n}^{k})^{2}=(-1)^{n}C_{2n}^{n}$②,由①$-$②,得$2\sum_{k = 1}^{2n}(C_{2n}^{k - 1})^{2}=C_{2n}^{n}-(-1)^{n}C_{2n}^{n}=C_{2n}^{n}+(-1)^{n - 1}C_{2n}^{n}$,所以$\sum_{k = 1}^{2n}(C_{2n}^{k - 1})^{2}=\frac{1}{2}[C_{2n}^{n}+(-1)^{n - 1}C_{2n}^{n}]$,故D正确。
8. [2025 浙江杭州阶段测试]在$(1 + ax)^{8}$的展开式中,有且仅有含$x^{4}$的项的系数最大,则实数$a$的取值范围是
$(-\frac{\sqrt{10}}{2},-\frac{\sqrt{10}}{5})\cup(\frac{4}{5},\frac{5}{4})$
.
答案: 8.$(-\frac{\sqrt{10}}{2},-\frac{\sqrt{10}}{5})\cup(\frac{4}{5},\frac{5}{4})$ 显然$a = 0$不符合题意。展开式的通项为$T_{r + 1}=C_{8}^{r}a^{r}x^{r}$。当$a>0$时,所有项的系数均为正数,则需满足$\begin{cases}C_{8}^{4}a^{4}>C_{8}^{3}a^{3}\\C_{8}^{4}a^{4}>C_{8}^{5}a^{5}\end{cases}$,解得$\frac{4}{5}<a<\frac{5}{4}$;当$a<0$时,奇数项的系数均为正数,偶数项的系数均为负数,则需满足$\begin{cases}C_{8}^{4}a^{4}>C_{8}^{2}a^{2}\\C_{8}^{4}a^{4}>C_{8}^{6}a^{6}\end{cases}$,解得$-\frac{\sqrt{10}}{2}<a<-\frac{\sqrt{10}}{5}$,则实数$a$的取值范围是$(-\frac{\sqrt{10}}{2},-\frac{\sqrt{10}}{5})\cup(\frac{4}{5},\frac{5}{4})$。

查看更多完整答案,请扫码查看

关闭