2025年安徽阳光夺冠单元与期末真题精选大试卷八年级数学上册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年安徽阳光夺冠单元与期末真题精选大试卷八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第8页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
9. 将三张直角三角形纸片按如图所示的方式放置,使它们的直角顶点重合,则∠1,∠2,∠3 三个角的数量关系是 (

A.∠1 + ∠3 = 2∠2
B.∠1 + ∠2 + ∠3 = 90°
C.∠2 + ∠3 = ∠1 + 90°
D.∠2 + ∠3 - ∠1 = 45°
C
)A.∠1 + ∠3 = 2∠2
B.∠1 + ∠2 + ∠3 = 90°
C.∠2 + ∠3 = ∠1 + 90°
D.∠2 + ∠3 - ∠1 = 45°
答案:
9.C [解析]根据题意,得$\angle 3 + \angle 4 = 90°$①,$\angle 1 + \angle 4 + \angle 5 = 90°$②,$\angle 5 + \angle 2 = 90°$③,① + ③,得$\angle 3 + \angle 4 + \angle 5 + \angle 2 = 180°$,$\because \angle 4 + \angle 5 = 90° - \angle 1$,$\therefore \angle 2 + \angle 3 + 90° - \angle 1 = 180°$,$\therefore \angle 2 + \angle 3 - \angle 1 = 90°$,即$\angle 2 + \angle 3 = \angle 1 + 90°$.故选:C.
10. 如图,AD,BE,CF 分别是△ABC 的中线、高和角平分线,∠ABC = 90°,CF 交 AD 于点 G,交 BE 于点 H,AB = BD. 则下列结论中不一定正确的是 (

A.AB = CD
B.FG = GC
C.∠ABE = 2∠FCB
D.∠BFH = ∠BHF
B
)A.AB = CD
B.FG = GC
C.∠ABE = 2∠FCB
D.∠BFH = ∠BHF
答案:
10.B [解析]A. $\because AD$是$\triangle ABC$的中线,$\therefore BD = DC$,$\because AB = BD$,$\therefore AB = CD$,故A正确,不符合题意;B. $FG$与$GC$的大小不能确定,故本选项结论不一定正确,符合题意;C. $\because \angle ABC = 90°$,$\therefore \angle ABE + \angle EBC = 90°$,$\because BE \perp AC$,$\therefore \angle BCE + \angle EBC = 90°$,$\therefore \angle ABE = \angle BCE$,$\because CF$是$\triangle ABC$的角平分线,$\therefore \angle BCE = 2\angle FCA = 2\angle FCB$,$\therefore \angle ABE = 2\angle FCB$,故C正确,不符合题意;D. $\because \angle ABC = 90°$,$\therefore \angle BFH = 90° - \angle FCB$,$\because BE \perp AC$,$\therefore \angle EHC = 90° - \angle FCA$,$\therefore \angle BFH = \angle EHC$,$\because \angle BHF = \angle EHC$,$\therefore \angle BFH = \angle BHF$,故D正确,不符合题意.故选:B.
11. 三角形的三边分别为 3,4 - 2a,5,则 a 的取值范围是
- 2 < a < 1
.
答案:
11. - 2 < a < 1 [解析]由三角形三边关系定理,得$5 - 3 < 4 - 2a < 5 + 3$,$\therefore 2 < 4 - 2a < 8$,$\therefore - 2 < a < 1$.故答案为: - 2 < a < 1.
12. 如图所示,一副三角板叠放在一起,则图中∠α 等于

105°
.
答案:
12. 105° [解析]$\because \angle CBD = 90° - \angle D = 90° - 30° = 60°$,$\therefore \angle ABE = \angle CBD = 60°$,$\therefore \angle \alpha = \angle A + \angle ABE = 45° + 60° = 105°$.故答案为: 105°.
13. 如图是一块面积为 10 的三角形纸板,点 D,E,F 分别是线段 AF,BD,CE 的中点,则阴影部分的面积为________.

答案:
13. $\frac{10}{7}$ [解析]如图,连接$AE$,$BF$,$CD$,$\because$点$D$,$E$,$F$分别是线段$AF$,$BD$,$CE$的中点,$\therefore AD = DF$,$BE = ED$,$EF = FC$,$\therefore S_{\triangle ADE} = S_{\triangle ABE}$,$S_{\triangle ADE} = S_{\triangle FDE}$,同理可得:$\triangle ABC$被分为7个面积相同的三角形,$\therefore$阴影部分三角形的面积是$\triangle ABC$的面积的$\frac{1}{7}$,$\because \triangle ABC$的面积为10,$\therefore$阴影部分的面积是$\frac{10}{7}$.故答案为: $\frac{10}{7}$.
13. $\frac{10}{7}$ [解析]如图,连接$AE$,$BF$,$CD$,$\because$点$D$,$E$,$F$分别是线段$AF$,$BD$,$CE$的中点,$\therefore AD = DF$,$BE = ED$,$EF = FC$,$\therefore S_{\triangle ADE} = S_{\triangle ABE}$,$S_{\triangle ADE} = S_{\triangle FDE}$,同理可得:$\triangle ABC$被分为7个面积相同的三角形,$\therefore$阴影部分三角形的面积是$\triangle ABC$的面积的$\frac{1}{7}$,$\because \triangle ABC$的面积为10,$\therefore$阴影部分的面积是$\frac{10}{7}$.故答案为: $\frac{10}{7}$.
14. 如图,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点 P,△ABC 的外角∠MBC 与∠NCB 的平分线交于点 Q,延长线段 BP,QC 交于点 E.
(1)∠QBE 的度数为
(2)在△BQE 中,若∠Q 等于∠E 的 3 倍,则∠A 的度数为

(1)∠QBE 的度数为
90°
;(2)在△BQE 中,若∠Q 等于∠E 的 3 倍,则∠A 的度数为
45°
.
答案:
14.
(1)90°
(2)45° [解析]
(1) $\because BP$平分$\angle ABC$,$BQ$平分$\angle MBC$,$\therefore \angle PBC = \frac{1}{2} \angle ABC$,$\angle CBQ = \frac{1}{2} \angle MBC$,$\therefore \angle PBC + \angle CBQ = \frac{1}{2} \angle ABC + \frac{1}{2} \angle MBC = \frac{1}{2} × 180° = 90°$,即$\angle QBE = 90°$;
(2)由
(1)知$\angle QBE = 90°$,$\therefore \angle Q + \angle E = 90°$,$\because \angle Q = 3\angle E$,$\therefore \angle E = 22.5°$,$\therefore \angle Q = 3\angle E = 67.5°$,$\therefore \triangle BCQ$中,$\angle QBC + \angle QCB = 180° - \angle Q = 112.5°$,$\because CQ$平分$\angle NCB$,$BQ$平分$\angle MBC$,$\therefore \angle MBC + \angle NCB = 2(\angle QBC + \angle QCB) = 225°$,$\therefore \angle ABC + \angle ACB = 360° - (\angle MBC + \angle NCB) = 135°$,$\therefore$在$\triangle ABC$中,$\angle A = 180° - (\angle ABC + \angle ACB) = 45°$.故答案为:
(1)90°
(2)45°.
(1)90°
(2)45° [解析]
(1) $\because BP$平分$\angle ABC$,$BQ$平分$\angle MBC$,$\therefore \angle PBC = \frac{1}{2} \angle ABC$,$\angle CBQ = \frac{1}{2} \angle MBC$,$\therefore \angle PBC + \angle CBQ = \frac{1}{2} \angle ABC + \frac{1}{2} \angle MBC = \frac{1}{2} × 180° = 90°$,即$\angle QBE = 90°$;
(2)由
(1)知$\angle QBE = 90°$,$\therefore \angle Q + \angle E = 90°$,$\because \angle Q = 3\angle E$,$\therefore \angle E = 22.5°$,$\therefore \angle Q = 3\angle E = 67.5°$,$\therefore \triangle BCQ$中,$\angle QBC + \angle QCB = 180° - \angle Q = 112.5°$,$\because CQ$平分$\angle NCB$,$BQ$平分$\angle MBC$,$\therefore \angle MBC + \angle NCB = 2(\angle QBC + \angle QCB) = 225°$,$\therefore \angle ABC + \angle ACB = 360° - (\angle MBC + \angle NCB) = 135°$,$\therefore$在$\triangle ABC$中,$\angle A = 180° - (\angle ABC + \angle ACB) = 45°$.故答案为:
(1)90°
(2)45°.
15. 如图,FA⊥EC,垂足为 E,∠F = 40°,∠C = 20°,求∠FBC 的度数.

答案:
15.解:在$\triangle AEC$中,$FA \perp EC$,$\therefore \angle AEC = 90°$,$\therefore \angle A = 90° - \angle C = 70°$,$\therefore \angle FBC = \angle A + \angle F = 70° + 40° = 110°$.
查看更多完整答案,请扫码查看