2025年安徽阳光夺冠单元与期末真题精选大试卷八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年安徽阳光夺冠单元与期末真题精选大试卷八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年安徽阳光夺冠单元与期末真题精选大试卷八年级数学上册人教版》

21. 如图,在△ABC 中,∠C = 90°,AD 是∠BAC 的平分线,DE⊥AB 于 E,F 在 AC 上,且 BD = DF.
(1)求证:CF = EB;
(2)试判断 AB 与 AF,EB 之间存在的数量关系. 并说明理由。
答案: 21.解:
(1)证明:$\because AD$是$\angle BAC$的平分线,$DE\perp AB$,$\angle C = 90^{\circ}$,$\therefore DC = DE$,在$Rt\triangle FCD$和$Rt\triangle BED$中,$\begin{cases}DF = DB\\DC = DE\end{cases}$,$\therefore Rt\triangle FCD\cong Rt\triangle BED(HL)$,$\therefore CF = EB$;
(2)$AB = AF + 2BE$.理由如下:在$Rt\triangle ACD$和$Rt\triangle AED$中,$\begin{cases}AD = AD\\DC = DE\end{cases}$,$\therefore Rt\triangle ACD\cong Rt\triangle AED(HL)$,$\therefore AC = AE$,由
(1),可知$CF = EB$,$\therefore AB = AE + BE = AF + FC + BE = AF + 2BE$.
22. 如图,已知 AC = BC,点 D 是 BC 上一点,∠ADE = ∠C.
(1)如图 1,若∠C = 90°,∠DBE = 135°,求证:
① ∠EDB = ∠A;
② DA = DE;
(2)如图 2,请直接写出∠DBE 与∠C 之间满足什么数量关系时,总有 DA = DE 成立。

答案: 22.解:
(1)证明:①$\because\angle ADE = \angle C = 90^{\circ}$,$\therefore\angle EDB + \angle ADC = 90^{\circ}$,$\angle A + \angle ADC = 90^{\circ}$,$\therefore\angle EDB = \angle A$;②在$AC$上截取$CF = CD$,连接$FD$,如图1,$\because\angle C = 90^{\circ}$,$\therefore\angle CFD = \angle CDF = 45^{\circ}$,$\therefore\angle AFD = 135^{\circ} = \angle DBE$,$\because AC = BC$,$\therefore AC - CF = BC - CD$,即$AF = DB$,由①知$\angle A = \angle BDE$,在$\triangle AFD$和$\triangle DBE$中,$\begin{cases}\angle A=\angle BDE\\AF = DB\\\angle AFD=\angle DBE\end{cases}$,$\therefore\triangle AFD\cong\triangle DBE(ASA)$,$\therefore DA = DE$;
(2)当$\angle DBE = 90^{\circ}+\frac{1}{2}\angle C$时,总有$DA = DE$成立.【解析】如图2,在$AC$上截取$CM = CD$,连接$MD$,$\because AC = BC$,$\therefore AM = BD$,$\because\angle ADB = \angle A+\angle C$,$\angle ADE = \angle BDE+\angle ADB$,$\angle ADE = \angle C$,$\therefore\angle A = \angle BDE$,$\because\angle CMD = 90^{\circ}-\frac{1}{2}\angle C$,$\therefore\angle AMD = 180^{\circ}-\angle CMD = 180^{\circ}-(90^{\circ}-\frac{1}{2}\angle C) = 90^{\circ}+\frac{1}{2}\angle C$,当$\angle DBE = 90^{\circ}+\frac{1}{2}\angle C$时,$\angle DBE = \angle AMD$,在$\triangle AMD$和$\triangle DBE$中,$\begin{cases}AM = DB\\\angle A=\angle BDE\\\angle AMD=\angle DBE\end{cases}$,$\therefore\triangle AMD\cong\triangle DBE(ASA)$,$\therefore DA = DE$.

查看更多完整答案,请扫码查看

关闭