2025年安徽阳光夺冠单元与期末真题精选大试卷八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年安徽阳光夺冠单元与期末真题精选大试卷八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年安徽阳光夺冠单元与期末真题精选大试卷八年级数学上册人教版》

19. 如图,△ABC 中,AD 平分∠BAC,P 为 AD 延长线上一点,PE⊥BC 于 E,已知∠ACB = 80°,∠B = 24°,
(1)∠BAC 的度数为
76°

(2)求∠P 的度数.
解:∵AD平分∠BAC,∴∠BAD = $\frac{1}{2}$∠BAC = $\frac{1}{2}$×76° = 38°,∵∠BDP = ∠B + ∠BAD,∴∠BDP = 24° + 38° = 62°,∵PE⊥BC于E,∴∠PED = 90°,∴∠P = 90° - ∠BDP = 90° - 62° = 28°。即∠P的度数为28°。

答案: 19.解:
(1)76°;[解析] $\angle BAC = 180° - \angle B - \angle ACB = 76°$.
(2) $\because AD$平分$\angle BAC$,$\therefore \angle BAD = \frac{1}{2} \angle BAC = \frac{1}{2} × 76° = 38°$,$\because \angle BDP = \angle B + \angle BAD$,$\therefore \angle BDP = 24° + 38° = 62°$,$\because PE \perp BC$于$E$,$\therefore \angle PED = 90°$,$\therefore \angle P = 90° - \angle BDP = 90° - 62° = 28°$.即$\angle P$的度数为28°.
20. 如图,已知 DE // AC,∠A = ∠DEF.
(1)证明:EF // AB;
(2)各位同学,小学已经学习过“三角形的内角和为 180°”,利用图形,试证明此定理,即证明:∠A + ∠B + ∠C = 180°.
答案: 20.证明:
(1) $\because DE // AC$,$\therefore \angle A = \angle BDE$,$\because \angle A = \angle DEF$,$\therefore \angle BDE = \angle DEF$,$\therefore EF // AB$;
(2) $\because DE // AC$,$EF // AB$,$\therefore \angle C = \angle DEB$,$\angle B = \angle CEF$,$\because \angle DEB + \angle DEF + \angle CEF = 180°$,$\angle A = \angle DEF$,$\therefore \angle A + \angle B + \angle C = 180°$.
21. 已知:如图 1,在△ABC 中,CD 是高,若∠A = ∠DCB.
(1)试判断△ABC 的形状,并说明理由;
(2)如图 2,若 AE 是△ABC 的角平分线,AE,CD 相交于点 F. 求证:∠CFE = ∠CEF.

答案:
21.解:
(1) $\triangle ABC$是直角三角形.理由如下:$\because$在$\triangle ABC$中,$CD$是高,$\therefore \angle CDA = 90°$,$\therefore \angle A + \angle ACD = 90°$,$\because \angle A = \angle DCB$,$\therefore \angle DCB + \angle ACD = 90°$,$\because \angle ACB = 90°$,$\therefore \triangle ABC$是直角三角形;
(2)证明:$\because AE$是角平分线,$\therefore \angle DAF = \angle CAE$,$\because \angle FDA = 90°$,$\angle ACE = 90°$,$\therefore \angle DAF + \angle AFD = 90°$,$\angle CAE + \angle CEA = 90°$,$\therefore \angle AFD = \angle CEA$,$\because \angle AFD = \angle CFE$,$\therefore \angle CFE = \angle CEA$,即$\angle CFE = \angle CEF$.

查看更多完整答案,请扫码查看

关闭