2025年暑假衔接七年级数学人教版延边人民出版社
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假衔接七年级数学人教版延边人民出版社 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第52页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
9. 如图,在$△ABC$中,$CD$平分$∠ACB$,$DE// AC$,$∠B = 72^{\circ}$,$∠EDC = 36^{\circ}$,求:
(1)$∠A$的度数为
(2)$∠ADC$的度数为

(1)$∠A$的度数为
36°
;(2)$∠ADC$的度数为
108°
.
答案:
(1) $\because \angle EDC = 36^{\circ}, DE // AC$, $\therefore \angle ACD = 36^{\circ}$. $\because CD$平分$\angle ACE$, $\therefore \angle ACB = 72^{\circ}$. $\because \angle B = 72^{\circ}$, $\therefore \angle A = 36^{\circ}$.
(2) $\because \angle ACD = 36^{\circ}$, $CD$平分$\angle ACE$, $\therefore \angle DCB = 36^{\circ}$, $\therefore \angle ADC = \angle DBC + \angle DCB = 108^{\circ}$.
(1) $\because \angle EDC = 36^{\circ}, DE // AC$, $\therefore \angle ACD = 36^{\circ}$. $\because CD$平分$\angle ACE$, $\therefore \angle ACB = 72^{\circ}$. $\because \angle B = 72^{\circ}$, $\therefore \angle A = 36^{\circ}$.
(2) $\because \angle ACD = 36^{\circ}$, $CD$平分$\angle ACE$, $\therefore \angle DCB = 36^{\circ}$, $\therefore \angle ADC = \angle DBC + \angle DCB = 108^{\circ}$.
10. 如图,$CE$是$△ABC$的外角$∠ACD$的平分线,且$CE$交$BA$的延长线于点$E$.
(1)若$∠B = 30^{\circ}$,$∠ACB = 40^{\circ}$,求$∠E$的度数;
(2)求证:$∠BAC = ∠B + 2∠E$.
(1)若$∠B = 30^{\circ}$,$∠ACB = 40^{\circ}$,求$∠E$的度数;
40°
(2)求证:$∠BAC = ∠B + 2∠E$.
答案:
(1) $\because \angle ACB = 40^{\circ}$, $\therefore \angle ACD = 180^{\circ} - 40^{\circ} = 140^{\circ}$, $\because \angle B = 30^{\circ}$, $\therefore \angle EAC = \angle B + \angle ACB = 70^{\circ}$, $\because CE$是$\triangle ABC$的外角$\angle ACD$的平分线,$\therefore \angle ACE = 70^{\circ}$, $\therefore \angle E = 180^{\circ} - 70^{\circ} - 70^{\circ} = 40^{\circ}$.
(2) $\because CE$平分$\angle ACD$, $\therefore \angle ACE = \angle DCE$, $\because \angle DCE = \angle B + \angle E$, $\therefore \angle ACE = \angle B + \angle E$, $\because \angle BAC = \angle ACE + \angle E$, $\therefore \angle BAC = \angle B + \angle E + \angle E = \angle B + 2\angle E$.
(1) $\because \angle ACB = 40^{\circ}$, $\therefore \angle ACD = 180^{\circ} - 40^{\circ} = 140^{\circ}$, $\because \angle B = 30^{\circ}$, $\therefore \angle EAC = \angle B + \angle ACB = 70^{\circ}$, $\because CE$是$\triangle ABC$的外角$\angle ACD$的平分线,$\therefore \angle ACE = 70^{\circ}$, $\therefore \angle E = 180^{\circ} - 70^{\circ} - 70^{\circ} = 40^{\circ}$.
(2) $\because CE$平分$\angle ACD$, $\therefore \angle ACE = \angle DCE$, $\because \angle DCE = \angle B + \angle E$, $\therefore \angle ACE = \angle B + \angle E$, $\because \angle BAC = \angle ACE + \angle E$, $\therefore \angle BAC = \angle B + \angle E + \angle E = \angle B + 2\angle E$.
11. (1)如图1所示,把$△ABC$纸片沿$DE$折叠,使点$A$落在四边形$BCED$内部点$A'$处,试说明:$2∠A = ∠1 + ∠2$;
(2)如图2所示,若把$△ABC$纸片沿$DE$折叠,使点$A$落在四边形$BCED$外部点$A'$处,此时$∠A$与$∠1$,$∠2$之间的数量关系是______
(3)如图3所示,若把四边形$ABCD$沿$EF$折叠,使点$A$,$D$落在四边形$BCFE$的内部点$A'$,$D'$处,请你探索$∠A$,$∠D$,$∠1$,$∠2$之间的数量关系.写出你的结论并说明理由.
(2)如图2所示,若把$△ABC$纸片沿$DE$折叠,使点$A$落在四边形$BCED$外部点$A'$处,此时$∠A$与$∠1$,$∠2$之间的数量关系是______
$2∠A = ∠1 - ∠2$
______;(3)如图3所示,若把四边形$ABCD$沿$EF$折叠,使点$A$,$D$落在四边形$BCFE$的内部点$A'$,$D'$处,请你探索$∠A$,$∠D$,$∠1$,$∠2$之间的数量关系.写出你的结论并说明理由.
答案:
(1) 根据翻折的性质,可得$\angle ADE = \frac{1}{2}(180^{\circ} - \angle 1)$, $\angle AED = \frac{1}{2}(180^{\circ} - \angle 2)$. $\because \angle A + \angle ADE + \angle AED = 180^{\circ}$, $\therefore \angle A + \frac{1}{2}(180^{\circ} - \angle 1) + \frac{1}{2}(180^{\circ} - \angle 2) = 180^{\circ}$. $\therefore 2\angle A = \angle 1 + \angle 2$.
(2) $2\angle A = \angle 1 - \angle 2$
(3) $2(\angle A + \angle D) = \angle 1 + \angle 2 + 360^{\circ}$. 理由如下:根据翻折的性质,可得$\angle AEF = \frac{1}{2}(180^{\circ} - \angle 1)$, $\angle DFE = \frac{1}{2}(180^{\circ} - \angle 2)$. $\because \angle A + \angle D + \angle AEF + \angle DFE = 360^{\circ}$, $\therefore \angle A + \angle D + \frac{1}{2}(180^{\circ} - \angle 1) + \frac{1}{2}(180^{\circ} - \angle 2) = 360^{\circ}$. $\therefore 2(\angle A + \angle D) = \angle 1 + \angle 2 + 360^{\circ}$.
(1) 根据翻折的性质,可得$\angle ADE = \frac{1}{2}(180^{\circ} - \angle 1)$, $\angle AED = \frac{1}{2}(180^{\circ} - \angle 2)$. $\because \angle A + \angle ADE + \angle AED = 180^{\circ}$, $\therefore \angle A + \frac{1}{2}(180^{\circ} - \angle 1) + \frac{1}{2}(180^{\circ} - \angle 2) = 180^{\circ}$. $\therefore 2\angle A = \angle 1 + \angle 2$.
(2) $2\angle A = \angle 1 - \angle 2$
(3) $2(\angle A + \angle D) = \angle 1 + \angle 2 + 360^{\circ}$. 理由如下:根据翻折的性质,可得$\angle AEF = \frac{1}{2}(180^{\circ} - \angle 1)$, $\angle DFE = \frac{1}{2}(180^{\circ} - \angle 2)$. $\because \angle A + \angle D + \angle AEF + \angle DFE = 360^{\circ}$, $\therefore \angle A + \angle D + \frac{1}{2}(180^{\circ} - \angle 1) + \frac{1}{2}(180^{\circ} - \angle 2) = 360^{\circ}$. $\therefore 2(\angle A + \angle D) = \angle 1 + \angle 2 + 360^{\circ}$.
查看更多完整答案,请扫码查看