2025年新课程实践与探究丛书八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课程实践与探究丛书八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年新课程实践与探究丛书八年级数学上册人教版》

例1 计算:
(1)$\frac{4x}{3y} \cdot \frac{y}{2x^3}$; (2)$\frac{a + 2}{a - 2} \cdot \frac{1}{a^2 + 2a}$;
(3)$\frac{x + 2}{x - 3} \cdot \frac{x^2 - 6x + 9}{x^2 - 4}$。
答案: (1)$\frac{2}{3x^2}$.
(2)$\frac{1}{a(a-2)}$.
(3)$\frac{x-3}{x-2}$.
1. 化简$\frac{16 - m^2}{m^2 + 6m + 9} \cdot \frac{m + 3}{4 - m}$的结果是( )

A.$\frac{4 + m}{m + 3}$
B.$\frac{4 - m}{m + 3}$
C.$\frac{4 + m}{m - 3}$
D.$\frac{4 - m}{m - 3}$
答案: 1.A.
例2 若计算$\frac{□}{x + y} ÷ \frac{x}{y^2 - x^2}$的结果为整式,则“$□$”中的式子可能是( )

A.$y - x$
B.$y + x$
C.$2x$
D.$\frac{1}{x}$
答案: 例2.C.
2. 计算:
(1)$3xy^2 ÷ \frac{6y^2}{x}$; (2)$\frac{x}{x^2y - y} ÷ \frac{x^2y}{x^2 + x}$;
(3)$\frac{a - 1}{a^2 - 4a + 4} ÷ \frac{a^2 - 1}{a^2 - 4}$。
答案: (1)$\frac{x^2}{2}$. (2)$\frac{1}{(x-1)y^2}$.
(3)$\frac{a+2}{a^2-a-2}$.

查看更多完整答案,请扫码查看

关闭