2025年暑假乐园现代教育出版社八年级数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假乐园现代教育出版社八年级数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第20页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
7. 如图4,某风景区的沿湖公路$AB=3$千米,$BC=4$千米,$CD=12$千米,$AD=13$千米,其中$AB⊥BC$,图中阴影部分是草地,其余是水面. 如果小康要乘快艇从点$C$出发,快艇行进速度为$11\frac{7}{13}$千米/时,那么到达对岸$AD$最少要用
0.4
小时.
答案:
解:连接 $ A C $,过点 $ C $ 作 $ C E \perp A D $ 于点 $ E $. 根据勾股定理,得 $ A C = 5$ 千米.
因为 $ A C ^ { 2 } + C D ^ { 2 } = 5 ^ { 2 } + 12 ^ { 2 } = 13 ^ { 2 } = A D ^ { 2 }$,所以 $ \triangle A C D $ 是直角三角形,且 $ \angle A C D = 90 ^ { \circ }$.
所以 $ A C \cdot C D = C E \cdot A D $,即 $ 5 \times 12 = 13 C E $. 所以 $ C E = \frac { 60 } { 13 }$.
$ \frac { 60 } { 13 } \div 11 \frac { 7 } { 13 } = 0.4$ (小时),所以到达对岸 $ A D $ 最少要用 $ 0.4$ 小时.
因为 $ A C ^ { 2 } + C D ^ { 2 } = 5 ^ { 2 } + 12 ^ { 2 } = 13 ^ { 2 } = A D ^ { 2 }$,所以 $ \triangle A C D $ 是直角三角形,且 $ \angle A C D = 90 ^ { \circ }$.
所以 $ A C \cdot C D = C E \cdot A D $,即 $ 5 \times 12 = 13 C E $. 所以 $ C E = \frac { 60 } { 13 }$.
$ \frac { 60 } { 13 } \div 11 \frac { 7 } { 13 } = 0.4$ (小时),所以到达对岸 $ A D $ 最少要用 $ 0.4$ 小时.
1. 如图1,一个长方体盒子的宽$AN=5cm$,长$ND=10cm$,$CD$边上有一点$B$,到点$D$的距离为$8cm$,若地面$A$处有一只蚂蚁到$B$处吃食,需要爬行的最短距离是多少?
答案:
解:将长方体盒子的侧面展开 (如图 1 所示),连接 $ A B $,则 $ A B $ 的长即为 $ A $ 处到 $ B $ 处的最短距离.
在 $ \mathrm { Rt } \triangle A B D $ 中,$ A D = A N + N D = 5 + 10 = 15 ( \mathrm { cm } )$,$ B D = 8 \mathrm { cm }$,所以 $ A B ^ { 2 } = A D ^ { 2 } + B D ^ { 2 } = 15 ^ { 2 } + 8 ^ { 2 } = 289 = 17 ^ { 2 }$,即 $ A B = 17 \mathrm { cm }$.
所以蚂蚁爬行的最短距离为 $ 17 \mathrm { cm }$.
解:将长方体盒子的侧面展开 (如图 1 所示),连接 $ A B $,则 $ A B $ 的长即为 $ A $ 处到 $ B $ 处的最短距离.
在 $ \mathrm { Rt } \triangle A B D $ 中,$ A D = A N + N D = 5 + 10 = 15 ( \mathrm { cm } )$,$ B D = 8 \mathrm { cm }$,所以 $ A B ^ { 2 } = A D ^ { 2 } + B D ^ { 2 } = 15 ^ { 2 } + 8 ^ { 2 } = 289 = 17 ^ { 2 }$,即 $ A B = 17 \mathrm { cm }$.
所以蚂蚁爬行的最短距离为 $ 17 \mathrm { cm }$.
查看更多完整答案,请扫码查看