第85页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
$11. $在$Rt\triangle ABC$中,$\cos B=\frac{\sqrt{3}}{2},$则$\frac{1}{2}\angle A$的正弦值为
$\frac{1}{2}$或$\frac{\sqrt{2}}{2}$
。
答案:
$\frac{1}{2}$或$\frac{\sqrt{2}}{2}$
12. 式子$2\cos 30^{\circ}-\tan 45^{\circ}-\sqrt{(1-\tan 60^{\circ})^{2}}$的值是(
A.$2\sqrt{3}-2$
B.$0$
C.$2\sqrt{3}$
D.$2$
B
)A.$2\sqrt{3}-2$
B.$0$
C.$2\sqrt{3}$
D.$2$
答案:
B
13. 如图,在正方形$ABCD$中,对角线$BD = 6\sqrt{2} cm$,$E$是$CD$上一点,且$CE = 2\sqrt{3} cm$,则$\angle BED=$

]
120°
。]
答案:
$120^{\circ}$
14. 定义一种运算:
$\sin (\alpha+\beta)=\sin \alpha\cos \beta+\cos \alpha\sin \beta$,
$\sin (\alpha-\beta)=\sin \alpha\cos \beta-\cos \alpha\sin \beta$。
例如:当$\alpha = 45^{\circ}$,$\beta = 30^{\circ}$时,$\sin (45^{\circ}+30^{\circ})=\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}×\frac{1}{2}=\frac{\sqrt{6}+\sqrt{2}}{4}$。
则$\sin 15^{\circ}$的值为
$\sin (\alpha+\beta)=\sin \alpha\cos \beta+\cos \alpha\sin \beta$,
$\sin (\alpha-\beta)=\sin \alpha\cos \beta-\cos \alpha\sin \beta$。
例如:当$\alpha = 45^{\circ}$,$\beta = 30^{\circ}$时,$\sin (45^{\circ}+30^{\circ})=\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}×\frac{1}{2}=\frac{\sqrt{6}+\sqrt{2}}{4}$。
则$\sin 15^{\circ}$的值为
$\frac{\sqrt{6} - \sqrt{2}}{4}$
。
答案:
$\frac{\sqrt{6} - \sqrt{2}}{4}$
15. 如图,在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$AC = 8$,$\angle BAC$的平分线交$BC$于点$D$,$AD=\frac{16\sqrt{3}}{3}$,求$\angle B$的度数及$AB$,$BC$的长。

]
]
答案:
解:$\because $在$ Rt \triangle ACD $中,$AC = 8, AD = \frac{16\sqrt{3}}{3}, \angle C = 90^{\circ}, \therefore$
$\cos \angle DAC = \frac{AC}{AD} = \frac{\sqrt{3}}{2}. \therefore \angle DAC = 30^{\circ}. $又$\because AD$平分$\angle BAC,$
$\therefore \angle BAC = 60^{\circ}, \angle B = 30^{\circ}. \therefore AB = 2AC = 16, BC = AB \cdot \sin \angle BAC$
$= 16 × \sin 60^{\circ} = 8\sqrt{3}.$
$\cos \angle DAC = \frac{AC}{AD} = \frac{\sqrt{3}}{2}. \therefore \angle DAC = 30^{\circ}. $又$\because AD$平分$\angle BAC,$
$\therefore \angle BAC = 60^{\circ}, \angle B = 30^{\circ}. \therefore AB = 2AC = 16, BC = AB \cdot \sin \angle BAC$
$= 16 × \sin 60^{\circ} = 8\sqrt{3}.$
16. 如图,在锐角三角形$ABC$中,$AD$与$CE$分别是边$BC$与$AB$上的高,$AB = 12$,$BC = 16$,$S_{\triangle ABC}=48$。
(1) 求$\angle B$的度数;
(2) 求$\tan \angle DAC$的值。

]
(1) 求$\angle B$的度数;
(2) 求$\tan \angle DAC$的值。
]
答案:
解:
(1)由题意可知,$S_{\triangle ABC} = \frac{1}{2} BC \cdot AD = 48, BC = 16, \therefore AD =$
6.在$ Rt \triangle ABD $中,$AB = 12, \therefore \sin B = \frac{AD}{AB} = \frac{6}{12} = \frac{1}{2}. \therefore \angle B =$
$30^{\circ}. (2)\because BC = 16, BD = AB \cdot \cos B = 6\sqrt{3}, \therefore CD = 16 - 6\sqrt{3}. $在
$Rt \triangle ACD $中,$CD = 16 - 6\sqrt{3}, AD = 6, \therefore \tan \angle DAC = \frac{16 - 6\sqrt{3}}{6}$
$= \frac{8}{3} - \sqrt{3}.$
(1)由题意可知,$S_{\triangle ABC} = \frac{1}{2} BC \cdot AD = 48, BC = 16, \therefore AD =$
6.在$ Rt \triangle ABD $中,$AB = 12, \therefore \sin B = \frac{AD}{AB} = \frac{6}{12} = \frac{1}{2}. \therefore \angle B =$
$30^{\circ}. (2)\because BC = 16, BD = AB \cdot \cos B = 6\sqrt{3}, \therefore CD = 16 - 6\sqrt{3}. $在
$Rt \triangle ACD $中,$CD = 16 - 6\sqrt{3}, AD = 6, \therefore \tan \angle DAC = \frac{16 - 6\sqrt{3}}{6}$
$= \frac{8}{3} - \sqrt{3}.$
17. 构建几何图形解决代数问题是“数形结合”思想的重要性,在计算$\tan 15^{\circ}$时,如图,在$Rt\triangle ACB$中,$\angle C = 90^{\circ}$,$\angle ABC = 30^{\circ}$,延长$CB$使$BD = AB$,连结$AD$,得$\angle D = 15^{\circ}$,所以$\tan 15^{\circ}=\frac{AC}{CD}=\frac{1}{2+\sqrt{3}}=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}=2-\sqrt{3}$。类比这种方法,计算$\tan 22.5^{\circ}$的值为(

A.$\sqrt{2}+1$
B.$\sqrt{2}-1$
C.$\sqrt{2}$
D.$\frac{1}{2}$
]
B
)A.$\sqrt{2}+1$
B.$\sqrt{2}-1$
C.$\sqrt{2}$
D.$\frac{1}{2}$
]
答案:
B
查看更多完整答案,请扫码查看