2025年名校课堂九年级数学上册华师大版8河南专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂九年级数学上册华师大版8河南专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂九年级数学上册华师大版8河南专版》

1. 下列各式中不是二次根式的是 (
B
)

A.$\sqrt{x^{2}+1}$
B.$\sqrt{-9}$
C.$-\sqrt{5}$
D.$\sqrt{(m-n)^{2}}$
答案: B
2. 下列各式中,是二次根式的有 (
B
)
①$\sqrt{4}$;②$\sqrt{a+1}$;③$\sqrt{2-\pi}$;④$\sqrt{-5}$;⑤$\sqrt{\dfrac{2}{x^{2}+1}}$.

A.1 个
B.2 个
C.3 个
D.4 个
答案: B
3. 新考向 开放性问题(2023·南阳宛城区期末)要使式子$\sqrt{x - 3}$有意义,则$x$的值可以是
4
.(写一个即可)
答案: 4(答案不唯一)
4. (2024·商丘民权县三模)若代数式$\dfrac{\sqrt{2x + 4}}{6}$在实数范围内有意义,则$x$的取值范围是
x≥-2
.
答案: x≥-2
5. 当$x$满足什么条件时,下列二次根式有意义?
(1)$\sqrt{-x}$;
(2)$\sqrt{2x - 6}$;
(3)$-\sqrt{\dfrac{1}{3 - x}}$;
(4)$\sqrt{x^{2}+9}$.
答案: 解:
(1)由-x≥0,得x≤0.
(2)由2x - 6≥0,得x≥3.
(3)由3 - x>0,得x<3.
(4)x为任意实数.
6. 下列等式正确的是 (
A
)

A.$(\sqrt{3})^{2}=3$
B.$\sqrt{(-3)^{2}}=-3$
C.$\sqrt{3^{3}}=3$
D.$(-\sqrt{3})^{2}=-3$
答案: A
$7. $化简:  
$(1)(\sqrt{2024})^{2}=$  
$2024$  
;$(2)-\sqrt{144}=$  
$-12$  
;  
$(3)\sqrt{(-\dfrac{1}{3})^{2}}=$  
$\frac{1}{3}$  
;$(4)\sqrt{a^{4}}(a \lt 0)=$  
$a^2$  
$.$  
答案: $(1)2024 (2)-12 (3)\frac{1}{3} (4)a^2$
8. 化简:$\sqrt{(a - 3)^{2}}=\begin{cases} \_\_\_\_\_\_\_\_(a \gt 3),
a - 3
\\
0
\_\_\_(a = 3), \\ \_\_\_\_\_\_\_\_(a \lt 3). \end{cases}$
答案: a - 3 0 3 - a
9. (本课时 T8 变式)如果$\sqrt{(x - 2)^{2}}=2 - x$,那么$x$的取值范围是
x≤2
.
答案: x≤2
10. 已知二次根式$\sqrt{x^{2}}$的值为 3,那么$x$的值是 (
D
)

A.3
B.9
C.$-3$
D.3 或$-3$
答案: D
11. 已知点$P$的坐标是$(-2 - \sqrt{m - 1},m)$,则点$P$关于$x$轴的对称点在第
象限.
答案:
12. 下列等式:①$\sqrt{\dfrac{1}{16}}=\dfrac{1}{8}$;②$\sqrt{(-7)^{2}}=\pm 7$;③$\sqrt{10^{-6}}=0.001$;④$(-\sqrt{5})^{2}=25$.其中正确的有 (
A
)

A.1 个
B.2 个
C.3 个
D.4 个
答案: A
13. (2024·内蒙古)已知实数$a$,$b$在数轴上的对应点的位置如图所示,则化简$\sqrt{(a - b)^{2}}-(b - a - 2)$的结果是 (
A
)


A.2
B.$2a - 2$
C.$2 - 2b$
D.$-2$
答案: A

查看更多完整答案,请扫码查看

关闭