第61页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
11. 如图,在$\triangle ABC$中,点$D$,$E$分别在$AB$,$AC$上,$AF$平分$\angle BAC$交$DE$于点$G$。若$AE=3$,$EC=1$,$AD=2$,$BD=4$,则$AG:AF=$(

A.$2:5$
B.$1:2$
C.$1:3$
D.$3:5$
B
)A.$2:5$
B.$1:2$
C.$1:3$
D.$3:5$
答案:
B
$12. (2023·$郑州管城区月考$)$如图,在$Rt \triangle ABC$中,$\angle ACB=90^{\circ},$$CD \perp AB,$垂足为$D。$如果$\frac{C_{\triangle ADC}}{C_{\triangle CDB}}=\frac{3}{2},$$AD=8,$那么$CD$的长是

$\frac{16}{3}$
。
答案:
$\frac{16}{3}$
$13. $如图所示,$D,$$E$分别是$\triangle ABC$的边$AB,$$BC$上的点,$DE // AC。$若$S_{\triangle BDE}:S_{\triangle CDE}=1:3,$则$S_{\triangle BDE}:S_{四边形DECA}$的值为

$\frac{1}{15}$
。
答案:
$\frac{1}{15}$
14. (2024·南阳名校期中联考)如图,$F$是平行四边形$ABCD$的边$AD$上一点,直线$CF$交线段$BA$的延长线于点$E$。
(1)求证:$\triangle AEF \backsim \triangle DCF$;
(2)$AF:DF=1:2$,$AE=\sqrt{2}$,$S_{\triangle AEF}=\frac{2}{3}$。
①求$AB$的长;
②求$\triangle EBC$的面积。

(1)求证:$\triangle AEF \backsim \triangle DCF$;
(2)$AF:DF=1:2$,$AE=\sqrt{2}$,$S_{\triangle AEF}=\frac{2}{3}$。
①求$AB$的长;
②求$\triangle EBC$的面积。
答案:
解:
(1)证明:$\because$四边形ABCD是平行四边形,$\therefore BA// CD.\therefore \angle E = \angle FCD,\angle EAF = \angle CDF.\therefore \triangle AEF\sim \triangle DCF$.
(2)①由
(1)知,$\triangle AEF\sim \triangle DCF,\therefore \frac{AE}{DC} = \frac{AF}{DF}.\because AF:DF = 1:2,AE = \sqrt{2},\therefore \frac{\sqrt{2}}{DC} = \frac{1}{2}\therefore DC = 2\sqrt{2}.\because$四边形ABCD是平行四边形,$\therefore AB = DC = 2\sqrt{2}$. ②$\because$四边形ABCD是平行四边形,$\therefore AD// BC.\therefore \triangle EAF\sim \triangle EBC.\therefore \frac{S_{\triangle EAF}}{S_{\triangle EBC}} = (\frac{EA}{EB})^2.\because S_{\triangle AEF} = \frac{2}{3},AB = 2\sqrt{2},AE = \sqrt{2},\therefore EB = EA + AB = 3\sqrt{2}.\therefore \frac{EA}{EB} = \frac{\sqrt{2}}{3\sqrt{2}} = \frac{1}{3}.\therefore \frac{\frac{2}{3}}{S_{\triangle EBC}} = (\frac{1}{3})^2\therefore S_{\triangle EBC} = 6$.
(1)证明:$\because$四边形ABCD是平行四边形,$\therefore BA// CD.\therefore \angle E = \angle FCD,\angle EAF = \angle CDF.\therefore \triangle AEF\sim \triangle DCF$.
(2)①由
(1)知,$\triangle AEF\sim \triangle DCF,\therefore \frac{AE}{DC} = \frac{AF}{DF}.\because AF:DF = 1:2,AE = \sqrt{2},\therefore \frac{\sqrt{2}}{DC} = \frac{1}{2}\therefore DC = 2\sqrt{2}.\because$四边形ABCD是平行四边形,$\therefore AB = DC = 2\sqrt{2}$. ②$\because$四边形ABCD是平行四边形,$\therefore AD// BC.\therefore \triangle EAF\sim \triangle EBC.\therefore \frac{S_{\triangle EAF}}{S_{\triangle EBC}} = (\frac{EA}{EB})^2.\because S_{\triangle AEF} = \frac{2}{3},AB = 2\sqrt{2},AE = \sqrt{2},\therefore EB = EA + AB = 3\sqrt{2}.\therefore \frac{EA}{EB} = \frac{\sqrt{2}}{3\sqrt{2}} = \frac{1}{3}.\therefore \frac{\frac{2}{3}}{S_{\triangle EBC}} = (\frac{1}{3})^2\therefore S_{\triangle EBC} = 6$.
15. (2023·郑州十一中月考)探究发现:
(1)如图1,将一张正方形纸片$ABCD$折叠,使顶点$A$落在边$CD$上的点$P$处(点$P$与点$C$,$D$不重合),折痕为$EF$,折叠后边$AB$落在$PQ$的位置,$PQ$与$BC$交于点$G$。若$DP=1$,$CP=4$,求$CG$的长;
实践应用:
(2)如图2,将边长为$5$的等边三角形纸片$ABC$折叠,使顶点$A$落在边$BC$上的点$P$处(点$P$与点$B$,$C$不重合),折痕为$EF$,当点$P$在边$BC$的什么位置时,$\triangle BEP$与$\triangle CPF$的面积比是$9:25$?请写出求解过程。

(1)如图1,将一张正方形纸片$ABCD$折叠,使顶点$A$落在边$CD$上的点$P$处(点$P$与点$C$,$D$不重合),折痕为$EF$,折叠后边$AB$落在$PQ$的位置,$PQ$与$BC$交于点$G$。若$DP=1$,$CP=4$,求$CG$的长;
实践应用:
(2)如图2,将边长为$5$的等边三角形纸片$ABC$折叠,使顶点$A$落在边$BC$上的点$P$处(点$P$与点$B$,$C$不重合),折痕为$EF$,当点$P$在边$BC$的什么位置时,$\triangle BEP$与$\triangle CPF$的面积比是$9:25$?请写出求解过程。
答案:
解:
(1)由折叠的性质知,$AE = EP,\angle A = \angle EPG.\because CP = 4,DP = 1,\therefore CD = AD = 5$. 设$ED = x$,则$AE = EP = 5 - x$. 在$Rt\triangle DEP$中,$EP^2 = ED^2 + PD^2,\therefore (5 - x)^2 = x^2 + 1$,解得$x = 2.4.\therefore ED = 2.4.\because$四边形ABCD是正方形,$\therefore \angle EDP = \angle C = \angle A = \angle EPG = 90°.\therefore \angle DEP + \angle EPD = 90°,\angle EPD + \angle CPG = 90°.\therefore \angle DEP = \angle CPG.\therefore \triangle DEP\sim \triangle CPG.\therefore \frac{DP}{CG} = \frac{DE}{CP}.\therefore CG = \frac{DP\cdot CP}{DE} = \frac{5}{3}$.
(2)由折叠的性质知,$\angle A = \angle EPF,AE = PE,AF = PF.\because \triangle ABC$是等边三角形,$\therefore \angle A = \angle B = \angle C = 60°,AB = BC = CA = 5.\therefore \angle B = \angle EPF.\because \angle B + \angle BEP = \angle EPC,\angle EPC = \angle EPF + \angle FPC,\therefore \angle BEP = \angle FPC.\therefore \triangle BEP\sim \triangle CPF.\because \triangle BEP\sim \triangle CPF,\triangle BEP$与$\triangle CPF$面积的比是$9:25,\therefore PE:PF = 3:5$. 设$PE = 3x$,则$AE = 3x,PF = AF = 5x.\therefore BE = AB - AE = 5 - 3x,FC = AC - AF = 5 - 5x.\because \triangle BEP\sim \triangle CPF,\therefore \frac{BP}{FC} = \frac{BE}{PC} = \frac{PE}{PF} = \frac{3}{5}\therefore BP = \frac{3}{5}FC = \frac{3}{5}(5 - 5x) = 3 - 3x.\therefore BP = 3 - 3x = 3 - 3× \frac{19}{24} = \frac{5}{8}.\because BP:BC = \frac{5}{8}:5 = \frac{1}{8},\therefore BP = \frac{1}{8}BC.\therefore$当点P在边BC的$\frac{1}{8}$处且靠近点B时,$\triangle BEP$与$\triangle CPF$的面积比是$9:25$.
(1)由折叠的性质知,$AE = EP,\angle A = \angle EPG.\because CP = 4,DP = 1,\therefore CD = AD = 5$. 设$ED = x$,则$AE = EP = 5 - x$. 在$Rt\triangle DEP$中,$EP^2 = ED^2 + PD^2,\therefore (5 - x)^2 = x^2 + 1$,解得$x = 2.4.\therefore ED = 2.4.\because$四边形ABCD是正方形,$\therefore \angle EDP = \angle C = \angle A = \angle EPG = 90°.\therefore \angle DEP + \angle EPD = 90°,\angle EPD + \angle CPG = 90°.\therefore \angle DEP = \angle CPG.\therefore \triangle DEP\sim \triangle CPG.\therefore \frac{DP}{CG} = \frac{DE}{CP}.\therefore CG = \frac{DP\cdot CP}{DE} = \frac{5}{3}$.
(2)由折叠的性质知,$\angle A = \angle EPF,AE = PE,AF = PF.\because \triangle ABC$是等边三角形,$\therefore \angle A = \angle B = \angle C = 60°,AB = BC = CA = 5.\therefore \angle B = \angle EPF.\because \angle B + \angle BEP = \angle EPC,\angle EPC = \angle EPF + \angle FPC,\therefore \angle BEP = \angle FPC.\therefore \triangle BEP\sim \triangle CPF.\because \triangle BEP\sim \triangle CPF,\triangle BEP$与$\triangle CPF$面积的比是$9:25,\therefore PE:PF = 3:5$. 设$PE = 3x$,则$AE = 3x,PF = AF = 5x.\therefore BE = AB - AE = 5 - 3x,FC = AC - AF = 5 - 5x.\because \triangle BEP\sim \triangle CPF,\therefore \frac{BP}{FC} = \frac{BE}{PC} = \frac{PE}{PF} = \frac{3}{5}\therefore BP = \frac{3}{5}FC = \frac{3}{5}(5 - 5x) = 3 - 3x.\therefore BP = 3 - 3x = 3 - 3× \frac{19}{24} = \frac{5}{8}.\because BP:BC = \frac{5}{8}:5 = \frac{1}{8},\therefore BP = \frac{1}{8}BC.\therefore$当点P在边BC的$\frac{1}{8}$处且靠近点B时,$\triangle BEP$与$\triangle CPF$的面积比是$9:25$.
查看更多完整答案,请扫码查看