第27页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
5. 解方程:
(1) $x^2 - 2x = 3$;
(2) $3x^2 - \sqrt{2}x - \frac{1}{4} = 0$;
(3) $2(x + 1)^2 = x^2 - 1$;
(4) $3x^2 - 10x + 8 = 0$。
(1) $x^2 - 2x = 3$;
(2) $3x^2 - \sqrt{2}x - \frac{1}{4} = 0$;
(3) $2(x + 1)^2 = x^2 - 1$;
(4) $3x^2 - 10x + 8 = 0$。
答案:
5.解:
(1)【解法一:配方法】$x^2 - 2x + 1 = 3 + 1$,即$(x - 1)^2 = 4.\therefore x - 1 = \pm2.\therefore x_1 = 3,x_2 = - 1.$【解法二:十字相乘法】$x^2 - 2x = 3,x^2 - 2x - 3 = 0,(x - 3)(x + 1) = 0,\therefore x - 3 = 0$或$x + 1 = 0.\therefore x_1 = 3,x_2 = - 1.(2)\because a = 3,b = -\sqrt{2},c = -\frac{1}{4},\therefore\Delta = (-\sqrt{2})^2 - 4×3×(-\frac{1}{4}) = 5.\therefore x = \frac{-(-\sqrt{2})\pm\sqrt{5}}{2×3} = \frac{\sqrt{2}\pm\sqrt{5}}{6},\therefore x_1 = \frac{\sqrt{2} + \sqrt{5}}{6},x_2 = \frac{\sqrt{2} - \sqrt{5}}{6}$.
(3)原方程整理,得$(x + 1)[2(x + 1) - (x - 1)] = 0,(x +1)[2x + 2 - x + 1] = 0,(x + 1)(x + 3) = 0,\therefore x + 1 = 0$或$x + 3 = 0.\therefore x_1 = - 1,x_2 = - 3.(4)(x - 2)(3x - 4) = 0,\therefore x - 2 = 0$或$3x - 4 = 0.\therefore x_1 = 2,x_2 = \frac{4}{3}$.
(1)【解法一:配方法】$x^2 - 2x + 1 = 3 + 1$,即$(x - 1)^2 = 4.\therefore x - 1 = \pm2.\therefore x_1 = 3,x_2 = - 1.$【解法二:十字相乘法】$x^2 - 2x = 3,x^2 - 2x - 3 = 0,(x - 3)(x + 1) = 0,\therefore x - 3 = 0$或$x + 1 = 0.\therefore x_1 = 3,x_2 = - 1.(2)\because a = 3,b = -\sqrt{2},c = -\frac{1}{4},\therefore\Delta = (-\sqrt{2})^2 - 4×3×(-\frac{1}{4}) = 5.\therefore x = \frac{-(-\sqrt{2})\pm\sqrt{5}}{2×3} = \frac{\sqrt{2}\pm\sqrt{5}}{6},\therefore x_1 = \frac{\sqrt{2} + \sqrt{5}}{6},x_2 = \frac{\sqrt{2} - \sqrt{5}}{6}$.
(3)原方程整理,得$(x + 1)[2(x + 1) - (x - 1)] = 0,(x +1)[2x + 2 - x + 1] = 0,(x + 1)(x + 3) = 0,\therefore x + 1 = 0$或$x + 3 = 0.\therefore x_1 = - 1,x_2 = - 3.(4)(x - 2)(3x - 4) = 0,\therefore x - 2 = 0$或$3x - 4 = 0.\therefore x_1 = 2,x_2 = \frac{4}{3}$.
6. 新考向 阅读理解 阅读材料:
为解方程 $(x^2 - 1)^2 - 3(x^2 - 1) = 0$,我们可以将 $x^2 - 1$ 视为一个整体,然后设 $x^2 - 1 = y$,将原方程化为 $y^2 - 3y = 0$ ①,解得 $y_1 = 0$,$y_2 = 3$。
当 $y = 0$ 时,$x^2 - 1 = 0$,$x^2 = 1$,$\therefore x = \pm 1$;
当 $y = 3$ 时,$x^2 - 1 = 3$,$x^2 = 4$,$\therefore x = \pm 2$。
$\therefore$ 原方程的解为 $x_1 = 1$,$x_2 = -1$,$x_3 = 2$,$x_4 = -2$。
解答问题:
(1) 在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了的数学的(
A. 方程思想
B. 转化思想
C. 数形结合思想
D. 建模思想
(2) 利用上述材料中的方法解方程:$(x^2 + x)^2 - (x^2 + x) - 2 = 0$。
为解方程 $(x^2 - 1)^2 - 3(x^2 - 1) = 0$,我们可以将 $x^2 - 1$ 视为一个整体,然后设 $x^2 - 1 = y$,将原方程化为 $y^2 - 3y = 0$ ①,解得 $y_1 = 0$,$y_2 = 3$。
当 $y = 0$ 时,$x^2 - 1 = 0$,$x^2 = 1$,$\therefore x = \pm 1$;
当 $y = 3$ 时,$x^2 - 1 = 3$,$x^2 = 4$,$\therefore x = \pm 2$。
$\therefore$ 原方程的解为 $x_1 = 1$,$x_2 = -1$,$x_3 = 2$,$x_4 = -2$。
解答问题:
(1) 在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了的数学的(
B
)A. 方程思想
B. 转化思想
C. 数形结合思想
D. 建模思想
(2) 利用上述材料中的方法解方程:$(x^2 + x)^2 - (x^2 + x) - 2 = 0$。
答案:
6.解:
(1)B
(2)令$x^2 + x = m$,则原方程化为$m^2 - m - 2 = 0.\therefore(m - 2)(m + 1) = 0.\therefore m - 2 = 0$或$m + 1 = 0$,解得$m = 2$或$m = - 1$.当$m = 2$时,$x^2 + x = 2$,即$x^2 + x - 2 = 0.\therefore(x + 2)(x - 1) = 0$,则$x + 2 = 0$或$x - 1 = 0$,解得$x_1 = - 2,x_2 = 1$;当$m = - 1$时,$x^2 + x = - 1$,即$x^2 + x + 1 = 0.\therefore(x + \frac{1}{2})^2 = -\frac{3}{4} < 0.\therefore$此方程没有实数根.综上所述,原方程的解为$x_1 = - 2,x_2 = 1$.
(1)B
(2)令$x^2 + x = m$,则原方程化为$m^2 - m - 2 = 0.\therefore(m - 2)(m + 1) = 0.\therefore m - 2 = 0$或$m + 1 = 0$,解得$m = 2$或$m = - 1$.当$m = 2$时,$x^2 + x = 2$,即$x^2 + x - 2 = 0.\therefore(x + 2)(x - 1) = 0$,则$x + 2 = 0$或$x - 1 = 0$,解得$x_1 = - 2,x_2 = 1$;当$m = - 1$时,$x^2 + x = - 1$,即$x^2 + x + 1 = 0.\therefore(x + \frac{1}{2})^2 = -\frac{3}{4} < 0.\therefore$此方程没有实数根.综上所述,原方程的解为$x_1 = - 2,x_2 = 1$.
查看更多完整答案,请扫码查看