2025年暑假作业甘肃少年儿童出版社高一数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假作业甘肃少年儿童出版社高一数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第59页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
11. 甲、乙两队进行足球比赛,若两队战平的概率是$ \frac{1}{4} $,乙队胜的概率是$ \frac{1}{3} $,则甲队胜的概率是
$\frac{5}{12}$
.
答案:
11.$\frac{5}{12}$
12. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为
$\frac{3}{10}$
.
答案:
12.$\frac{3}{10}$
13. 试验E:箱子里有3双不同的手套,随机拿出2只,记随机事件A为“拿出的手套配不成对”;随机事件B为“拿出的是同一只手上的手套”;随机事件C为“拿出的手套一只是左手的,一只是右手的,但配不成对”.
(1)写出试验E的样本空间Ω,并指出样本点的个数;
(2)分别用样本点表示随机事件A、随机事件B、随机事件C,并指出每个随机事件的样本点的个数;
(3)写出$ A\cap B,B\cap C,A\cap C,B\cup C $.
(1)写出试验E的样本空间Ω,并指出样本点的个数;
(2)分别用样本点表示随机事件A、随机事件B、随机事件C,并指出每个随机事件的样本点的个数;
(3)写出$ A\cap B,B\cap C,A\cap C,B\cup C $.
答案:
13.【解析】
(1)分别设3双手套为$a_{1},a_{2},b_{1},b_{2},c_{1},c_{2}$,其中$a_{1},b_{1},c_{1}$分别代表左手的3只手套,$a_{2},b_{2},c_{2}$分别代表右手的3只手套。试验$E$的样本空间$\Omega = \{ (a_{1},a_{2}),(a_{1},b_{1}),(a_{1},b_{2}),(a_{1},c_{1}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},b_{2}),(a_{2},c_{1}),(a_{2},c_{2}),(b_{1},b_{2}),(b_{1},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}),(b_{2},c_{2}),(c_{1},c_{2}) \}$,样本点的个数为15。
(2)随机事件$A = \{ (a_{1},b_{1}),(a_{1},b_{2}),(a_{1},c_{1}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},b_{2}),(a_{2},c_{1}),(a_{2},c_{2}),(b_{1},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}),(b_{2},c_{2}) \}$,样本点的个数为12。
随机事件$B = \{ (a_{1},b_{1}),(a_{1},c_{1}),(a_{2},b_{2}),(a_{2},c_{2}),(b_{1},c_{1}),(b_{2},c_{2}) \}$,样本点的个数为6。
随机事件$C = \{ (a_{1},b_{2}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}) \}$,样本点的个数为6。
(3)$A \cap B = \{ (a_{1},b_{1}),(a_{1},c_{1}),(a_{2},b_{2}),(a_{2},c_{2}),(b_{1},c_{1}),(b_{2},c_{2}) \}$,$B \cap C = \varnothing$,$A \cap C = \{ (a_{1},b_{2}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}) \}$,$B \cup C = \{ (a_{1},b_{1}),(a_{1},b_{2}),(a_{1},c_{1}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},b_{2}),(a_{2},c_{1}),(a_{2},c_{2}),(b_{1},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}),(b_{2},c_{2}) \}$。
(1)分别设3双手套为$a_{1},a_{2},b_{1},b_{2},c_{1},c_{2}$,其中$a_{1},b_{1},c_{1}$分别代表左手的3只手套,$a_{2},b_{2},c_{2}$分别代表右手的3只手套。试验$E$的样本空间$\Omega = \{ (a_{1},a_{2}),(a_{1},b_{1}),(a_{1},b_{2}),(a_{1},c_{1}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},b_{2}),(a_{2},c_{1}),(a_{2},c_{2}),(b_{1},b_{2}),(b_{1},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}),(b_{2},c_{2}),(c_{1},c_{2}) \}$,样本点的个数为15。
(2)随机事件$A = \{ (a_{1},b_{1}),(a_{1},b_{2}),(a_{1},c_{1}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},b_{2}),(a_{2},c_{1}),(a_{2},c_{2}),(b_{1},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}),(b_{2},c_{2}) \}$,样本点的个数为12。
随机事件$B = \{ (a_{1},b_{1}),(a_{1},c_{1}),(a_{2},b_{2}),(a_{2},c_{2}),(b_{1},c_{1}),(b_{2},c_{2}) \}$,样本点的个数为6。
随机事件$C = \{ (a_{1},b_{2}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}) \}$,样本点的个数为6。
(3)$A \cap B = \{ (a_{1},b_{1}),(a_{1},c_{1}),(a_{2},b_{2}),(a_{2},c_{2}),(b_{1},c_{1}),(b_{2},c_{2}) \}$,$B \cap C = \varnothing$,$A \cap C = \{ (a_{1},b_{2}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}) \}$,$B \cup C = \{ (a_{1},b_{1}),(a_{1},b_{2}),(a_{1},c_{1}),(a_{1},c_{2}),(a_{2},b_{1}),(a_{2},b_{2}),(a_{2},c_{1}),(a_{2},c_{2}),(b_{1},c_{1}),(b_{1},c_{2}),(b_{2},c_{1}),(b_{2},c_{2}) \}$。
14. 有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就座时,
(1)求这四人恰好都坐在自己的席位上的概率.
(2)求这四人恰好都没坐在自己的席位上的概率.
(1)求这四人恰好都坐在自己的席位上的概率.
(2)求这四人恰好都没坐在自己的席位上的概率.
答案:
14.【解析】将$A,B,C,D$四位贵宾就座情况用下面图形表示出来:
如图所示,本题中的样本点的总数为24。
(1)设事件$A$为“这四人恰好都坐在自己的席位上”,则事件$A$只包含1个样本点,所以$P(A)=\frac{1}{24}$。
(2)设事件$B$为“这四个人恰好都没有坐在自己席位上”,则事件$B$包含9个样本点,所以$P(B)=\frac{9}{24}=\frac{3}{8}$。
14.【解析】将$A,B,C,D$四位贵宾就座情况用下面图形表示出来:
如图所示,本题中的样本点的总数为24。
(1)设事件$A$为“这四人恰好都坐在自己的席位上”,则事件$A$只包含1个样本点,所以$P(A)=\frac{1}{24}$。
(2)设事件$B$为“这四个人恰好都没有坐在自己席位上”,则事件$B$包含9个样本点,所以$P(B)=\frac{9}{24}=\frac{3}{8}$。
查看更多完整答案,请扫码查看