2025年课时练作业与测评九年级数学上册冀教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课时练作业与测评九年级数学上册冀教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第50页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
23. (10分)某市科研考察队为了求出某海岛上的山峰AB的高度,如图C-25-17,在同一海平面的D处和F处分别树立标杆CD和EF,标杆的高都是5.5m,DF两处相隔80m,从标杆CD向后退11m的G处,可以看到顶峰A和标杆顶端C在一条直线上;从标杆EF向后退13m的H处,可以看到顶峰A和标杆顶端E在一条直线上.求山峰AB的高度及它和标杆CD的水平距离.
注:图中各点都在一个平面内.

注:图中各点都在一个平面内.
答案:
解:由题意得$AB \bot BH,CD \bot BH,EF \bot BH$,
$\therefore \angle B = \angle CDG = \angle EFH = 90^{\circ}$.
$\because \angle AGB = \angle CGD$,$\therefore \triangle ABG \backsim \triangle CDG$,
$\therefore \frac{CD}{AB} = \frac{DG}{BG}$,$\therefore \frac{5.5}{AB} = \frac{11}{11 + BD}$
$\because \angle H = \angle H,\angle EFH = \angle B$,
$\therefore \triangle EFH \backsim \triangle ABH$,
$\therefore \frac{EF}{AB} = \frac{FH}{BH}$,$\therefore \frac{5.5}{AB} = \frac{13}{13 + 80 + BD}$,
解得$BD = 440m$,
$\therefore \frac{5.5}{AB} = \frac{11}{11 + 440}$,解得$AB = 225.5m$,
$\therefore$山峰$AB$的高度为$225.5m$,它和标杆$CD$的水平距离为$440m$.
$\therefore \angle B = \angle CDG = \angle EFH = 90^{\circ}$.
$\because \angle AGB = \angle CGD$,$\therefore \triangle ABG \backsim \triangle CDG$,
$\therefore \frac{CD}{AB} = \frac{DG}{BG}$,$\therefore \frac{5.5}{AB} = \frac{11}{11 + BD}$
$\because \angle H = \angle H,\angle EFH = \angle B$,
$\therefore \triangle EFH \backsim \triangle ABH$,
$\therefore \frac{EF}{AB} = \frac{FH}{BH}$,$\therefore \frac{5.5}{AB} = \frac{13}{13 + 80 + BD}$,
解得$BD = 440m$,
$\therefore \frac{5.5}{AB} = \frac{11}{11 + 440}$,解得$AB = 225.5m$,
$\therefore$山峰$AB$的高度为$225.5m$,它和标杆$CD$的水平距离为$440m$.
24. 探究性试题(12分)某校数学活动小组在一次活动中,对一个数学问题作如下探究:
(1)【问题发现】如图C-25-18(1),在等边$\triangle ABC$中,点P是边BC上任意一点,连接AP,以AP为边作等边$\triangle APQ$,连接CQ,BP与CQ的数量关系是____.
(2)【变式探究】如图C-25-18(2),在等腰$\triangle ABC$中,$AB = BC$,点P是边BC上任意一点,以AP为腰作等腰$\triangle APQ$,使$AP = PQ$,$\angle APQ=\angle B$,连接CQ,判断$\angle B$和$\angle ACQ$的数量关系,并说明理由.
(3)【解决问题】如图C-25-18(3),在正方形ADBC中,点P是边BC上一点,以AP为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为3,$CQ = 1$,求正方形ADBC的边长.

(1)【问题发现】如图C-25-18(1),在等边$\triangle ABC$中,点P是边BC上任意一点,连接AP,以AP为边作等边$\triangle APQ$,连接CQ,BP与CQ的数量关系是____.
(2)【变式探究】如图C-25-18(2),在等腰$\triangle ABC$中,$AB = BC$,点P是边BC上任意一点,以AP为腰作等腰$\triangle APQ$,使$AP = PQ$,$\angle APQ=\angle B$,连接CQ,判断$\angle B$和$\angle ACQ$的数量关系,并说明理由.
(3)【解决问题】如图C-25-18(3),在正方形ADBC中,点P是边BC上一点,以AP为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为3,$CQ = 1$,求正方形ADBC的边长.
答案:
解:
(1)$BP = CQ$
(2)$\angle ABC = \angle ACQ$.理由如下:
$\because$在等腰$\triangle ABC$中,$AB = BC$,
$\therefore \angle BAC = \frac{1}{2}(180^{\circ} - \angle B)$.
$\because$在等腰$\triangle APQ$中,$AP = PQ$,
$\therefore \angle PAQ = \frac{1}{2}(180^{\circ} - \angle APQ)$.
又$\because \angle APQ = \angle B$,$\therefore \angle BAC = \angle PAQ$,
$\therefore \triangle BAC \backsim \triangle PAQ$,$\therefore \frac{AB}{AC} = \frac{PA}{AQ}$.
$\because \angle BAP + \angle PAC = \angle PAC + \angle CAQ$,
$\therefore \angle BAP = \angle CAQ$,
$\therefore \triangle BAP \backsim \triangle CAQ$,
$\therefore \angle B = \angle ACQ$.
(3)如图D-25-11,连接$AB,AQ$
$\because$四边形$ADBC$是正方形,
$\therefore \frac{AB}{AC} = \sqrt{2},\angle BAC = 45^{\circ}$.
$\because Q$是正方形$APEF$的中心,
$\therefore \frac{AP}{AQ} = \sqrt{2},\angle PAQ = 45^{\circ}$,
$\therefore \angle BAP + \angle PAC = \angle PAC + \angle CAQ$,
$\therefore \angle BAP = \angle CAQ$.
又$\because \frac{AB}{AC} = \frac{AP}{AQ} = \sqrt{2}$,
$\therefore \triangle ABP \backsim \triangle ACQ$,$\therefore \frac{AC}{AB} = \frac{CQ}{BP} = \frac{1}{\sqrt{2}}$
又$\because CQ = 1$,$\therefore BP = \sqrt{2} CQ = \sqrt{2}$.
设$PC = x$,则$BC = AC = \sqrt{2} + x$,
在$Rt \triangle APC$中,$AP^{2} = AC^{2} + PC^{2}$,即$3^{2} = (\sqrt{2} + x)^{2} + x^{2}$,
解得$x = \frac{ - \sqrt{2} \pm 4}{2}$
$\because x > 0$,$\therefore x = \frac{ - \sqrt{2} + 4}{2}$,
$\therefore$正方形$ADBC$的边长$= \sqrt{2} + x = \sqrt{2} + \frac{ - \sqrt{2} + 4}{2} = \frac{\sqrt{2}}{2} + 2$.
解:
(1)$BP = CQ$
(2)$\angle ABC = \angle ACQ$.理由如下:
$\because$在等腰$\triangle ABC$中,$AB = BC$,
$\therefore \angle BAC = \frac{1}{2}(180^{\circ} - \angle B)$.
$\because$在等腰$\triangle APQ$中,$AP = PQ$,
$\therefore \angle PAQ = \frac{1}{2}(180^{\circ} - \angle APQ)$.
又$\because \angle APQ = \angle B$,$\therefore \angle BAC = \angle PAQ$,
$\therefore \triangle BAC \backsim \triangle PAQ$,$\therefore \frac{AB}{AC} = \frac{PA}{AQ}$.
$\because \angle BAP + \angle PAC = \angle PAC + \angle CAQ$,
$\therefore \angle BAP = \angle CAQ$,
$\therefore \triangle BAP \backsim \triangle CAQ$,
$\therefore \angle B = \angle ACQ$.
(3)如图D-25-11,连接$AB,AQ$
$\because$四边形$ADBC$是正方形,
$\therefore \frac{AB}{AC} = \sqrt{2},\angle BAC = 45^{\circ}$.
$\because Q$是正方形$APEF$的中心,
$\therefore \frac{AP}{AQ} = \sqrt{2},\angle PAQ = 45^{\circ}$,
$\therefore \angle BAP + \angle PAC = \angle PAC + \angle CAQ$,
$\therefore \angle BAP = \angle CAQ$.
又$\because \frac{AB}{AC} = \frac{AP}{AQ} = \sqrt{2}$,
$\therefore \triangle ABP \backsim \triangle ACQ$,$\therefore \frac{AC}{AB} = \frac{CQ}{BP} = \frac{1}{\sqrt{2}}$
又$\because CQ = 1$,$\therefore BP = \sqrt{2} CQ = \sqrt{2}$.
设$PC = x$,则$BC = AC = \sqrt{2} + x$,
在$Rt \triangle APC$中,$AP^{2} = AC^{2} + PC^{2}$,即$3^{2} = (\sqrt{2} + x)^{2} + x^{2}$,
解得$x = \frac{ - \sqrt{2} \pm 4}{2}$
$\because x > 0$,$\therefore x = \frac{ - \sqrt{2} + 4}{2}$,
$\therefore$正方形$ADBC$的边长$= \sqrt{2} + x = \sqrt{2} + \frac{ - \sqrt{2} + 4}{2} = \frac{\sqrt{2}}{2} + 2$.
查看更多完整答案,请扫码查看