2025年课时练作业与测评九年级数学上册冀教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课时练作业与测评九年级数学上册冀教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第49页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
19. (8分)如图C-25-13,在$\triangle ABC$中,$\angle B = 2\angle A$,利用尺规作图法在边AC上求作一点D,使得$\triangle BDC\backsim\triangle ABC$.(不写作法,保留作图痕迹)

答案:
【解】如图D-25-10所示,点$D$为所求.
【解】如图D-25-10所示,点$D$为所求.
20. (8分)如图C-25-14,点D,F是$\triangle ABC$的AB边上的两点,满足$AD^{2}=AF· AB$,连接CD,过点F作$EF// DC$,交边AC于E,连接DE.
(1)求证:$DE// BC$.
(2)若$\triangle DBC$的面积为3,$\triangle DEC$的面积为2,求$\triangle ABC$的面积.

(1)求证:$DE// BC$.
(2)若$\triangle DBC$的面积为3,$\triangle DEC$的面积为2,求$\triangle ABC$的面积.
答案:
(1)证明:$\because AD^{2} = AF · AB$,$\therefore\frac{AD}{AF} = \frac{AB}{AD}$.
$\because EF // DC$,$\therefore\frac{AD}{AF} = \frac{AC}{AE}$,
$\therefore\frac{AB}{AD} = \frac{AC}{AE}$,$\therefore DE // BC$.
(2)解:$\because DE // BC,\triangle DBC$的面积为3,$\triangle DEC$的面积为2,$\therefore \triangle ADE \backsim \triangle ABC$,$\frac{DE}{BC} = \frac{2}{3}$,
$\therefore \frac{\triangle ADE的面积}{\triangle ABC的面积} = (\frac{2}{3})^{2} = \frac{4}{9}$,即$\frac{\triangle ABC的面积 - 3 - 2}{\triangle ABC的面积} = \frac{4}{9}$,$\therefore \triangle ABC$的面积为9.
(1)证明:$\because AD^{2} = AF · AB$,$\therefore\frac{AD}{AF} = \frac{AB}{AD}$.
$\because EF // DC$,$\therefore\frac{AD}{AF} = \frac{AC}{AE}$,
$\therefore\frac{AB}{AD} = \frac{AC}{AE}$,$\therefore DE // BC$.
(2)解:$\because DE // BC,\triangle DBC$的面积为3,$\triangle DEC$的面积为2,$\therefore \triangle ADE \backsim \triangle ABC$,$\frac{DE}{BC} = \frac{2}{3}$,
$\therefore \frac{\triangle ADE的面积}{\triangle ABC的面积} = (\frac{2}{3})^{2} = \frac{4}{9}$,即$\frac{\triangle ABC的面积 - 3 - 2}{\triangle ABC的面积} = \frac{4}{9}$,$\therefore \triangle ABC$的面积为9.
21. (9分)如图C-25-15,在平面直角坐标系中,已知$OA = 12cm$,$OB = 6cm$.点P从点O开始沿OA边向点A以1cm/s的速度移动;点Q从点B开始沿BO边向点O以1cm/s的速度移动.如果P,Q同时出发,用$t(s)$表示移动的时间$(0\leq t\leq6)$,那么当t为何值时,$\triangle POQ$与$\triangle AOB$相似?

答案:
解:由题意得$OP = t cm,OQ = OB - BQ = (6 - t)cm$.
①当$\triangle POQ \backsim \triangle AOB$时,$\frac{OP}{OA} = \frac{OQ}{OB}$,即$\frac{t}{12} = \frac{6 - t}{6}$
整理,得$12 - 2t = t$,解得$t = 4$.
②当$\triangle POQ \backsim \triangle BOA$时,$\frac{OP}{OB} = \frac{OQ}{OA}$,即$\frac{t}{6} = \frac{6 - t}{12}$
整理,得$6 - t = 2t$,解得$t = 2$.
$\because 0 \leq t \leq 6$,
$\therefore t = 4$和$t = 2$均符合题意,
$\therefore$当$t = 4$或$t = 2$时,$\triangle POQ$与$\triangle AOB$相似.
①当$\triangle POQ \backsim \triangle AOB$时,$\frac{OP}{OA} = \frac{OQ}{OB}$,即$\frac{t}{12} = \frac{6 - t}{6}$
整理,得$12 - 2t = t$,解得$t = 4$.
②当$\triangle POQ \backsim \triangle BOA$时,$\frac{OP}{OB} = \frac{OQ}{OA}$,即$\frac{t}{6} = \frac{6 - t}{12}$
整理,得$6 - t = 2t$,解得$t = 2$.
$\because 0 \leq t \leq 6$,
$\therefore t = 4$和$t = 2$均符合题意,
$\therefore$当$t = 4$或$t = 2$时,$\triangle POQ$与$\triangle AOB$相似.
22. (9分)如图C-25-16,在四边形ABCD中,$AD// BC$,$AB\perp BC$,点E在AB上,$\angle DEC = 90^{\circ}$.
(1)求证:$\triangle ADE\backsim\triangle BEC$.
(2)若$AD = 1$,$BC = 3$,$AE = 2$,求AB的长.

(1)求证:$\triangle ADE\backsim\triangle BEC$.
(2)若$AD = 1$,$BC = 3$,$AE = 2$,求AB的长.
答案:
(1)证明:$\because AD // BC,AB \bot BC$,$\therefore AB \bot AD$,
$\therefore \angle A = \angle B = 90^{\circ}$,
$\therefore \angle ADE + \angle AED = 90^{\circ}$.
$\because \angle DEC = 90^{\circ}$,
$\therefore \angle AED + \angle BEC = 90^{\circ}$,
$\therefore \angle ADE = \angle BEC$,
$\therefore \triangle ADE \backsim \triangle BEC$.
(2)解:$\because \triangle ADE \backsim \triangle BEC$,
$\therefore \frac{AD}{BE} = \frac{AE}{BC}$,即$\frac{1}{BE} = \frac{2}{3}$,
$\therefore BE = \frac{3}{2}$,$\therefore AB = AE + BE = \frac{7}{2}$.
(1)证明:$\because AD // BC,AB \bot BC$,$\therefore AB \bot AD$,
$\therefore \angle A = \angle B = 90^{\circ}$,
$\therefore \angle ADE + \angle AED = 90^{\circ}$.
$\because \angle DEC = 90^{\circ}$,
$\therefore \angle AED + \angle BEC = 90^{\circ}$,
$\therefore \angle ADE = \angle BEC$,
$\therefore \triangle ADE \backsim \triangle BEC$.
(2)解:$\because \triangle ADE \backsim \triangle BEC$,
$\therefore \frac{AD}{BE} = \frac{AE}{BC}$,即$\frac{1}{BE} = \frac{2}{3}$,
$\therefore BE = \frac{3}{2}$,$\therefore AB = AE + BE = \frac{7}{2}$.
查看更多完整答案,请扫码查看