第65页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
1. 如图,在矩形ABCD中,AB = 2, BC = 1,把矩形

ABCD沿过点A的直线AE折叠,使点D落在矩形ABCD内部的点D'处,则CD'的最小值是 ( )
A. 1
B. $\sqrt{5}$
C. $\sqrt{5}$ − 1
D. $\sqrt{5}$ + 1
ABCD沿过点A的直线AE折叠,使点D落在矩形ABCD内部的点D'处,则CD'的最小值是 ( )
A. 1
B. $\sqrt{5}$
C. $\sqrt{5}$ − 1
D. $\sqrt{5}$ + 1
答案:
C [解析]当点D'位于A、C的连线上时,CD'的值最小.由折叠的性质可得AD = AD' = BC = 1.在Rt△ABC中,由勾股定理可得AC = √5,
∴CD = AC - AD = √5 - 1.
∴CD = AC - AD = √5 - 1.
2. 如图1,在矩形纸片ABCD中, AB = 5, BC = 3,先按图2操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图3操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点的距离为________.
答案:
√10
3. 如图所示,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,点A的坐标为(10, 0),点C的坐标为(0, 6),将纸片沿过点C的直线CE折叠,使点B落在边OA上的点D处,求线段EA的长.
答案:
解:
∵点A的坐标为(10,0),点C的坐标为(0,6),
∴OA = 10,OC = 6.
∵四边形OABC是矩形,
∴AB = OC = 6,BC = OA = 10,∠EAD = ∠COD = 90°.由折叠的性质,得CD = BC = 10,BE = DE.在Rt△COD中,根据勾股定理,得OD = √(CD² - OC²) = 8.
∴AD = OA - OD = 2.设EA = x,则BE = DE = 6 - x.在Rt△ADE中,根据勾股定理,得EA² + AD² = DE².
∴x² + 2² = (6 - x)².解得x = 8/3.
∴线段EA的长为8/3.
∵点A的坐标为(10,0),点C的坐标为(0,6),
∴OA = 10,OC = 6.
∵四边形OABC是矩形,
∴AB = OC = 6,BC = OA = 10,∠EAD = ∠COD = 90°.由折叠的性质,得CD = BC = 10,BE = DE.在Rt△COD中,根据勾股定理,得OD = √(CD² - OC²) = 8.
∴AD = OA - OD = 2.设EA = x,则BE = DE = 6 - x.在Rt△ADE中,根据勾股定理,得EA² + AD² = DE².
∴x² + 2² = (6 - x)².解得x = 8/3.
∴线段EA的长为8/3.
4. 如图,在矩形ABCD中, AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处, AE交CD于点F,连结DE.
(1)求证:△ADE≌△CED.
(2)求证:△DEF是等腰三角形.
(1)求证:△ADE≌△CED.
(2)求证:△DEF是等腰三角形.
答案:
证明:
(1)
∵四边形ABCD是矩形,
∴AD = BC,AB = CD.由折叠的性质可得BC = CE,AB = AE.
∴AD = CE,AE = CD.又
∵DE = ED,
∴△ADE ≌ △CED.
(2)由
(1),得△ADE ≌ △CED.
∴∠DEA = ∠EDC,即∠DEF = ∠EDF.
∴EF = DF.
∴△DEF是等腰三角形.
(1)
∵四边形ABCD是矩形,
∴AD = BC,AB = CD.由折叠的性质可得BC = CE,AB = AE.
∴AD = CE,AE = CD.又
∵DE = ED,
∴△ADE ≌ △CED.
(2)由
(1),得△ADE ≌ △CED.
∴∠DEA = ∠EDC,即∠DEF = ∠EDF.
∴EF = DF.
∴△DEF是等腰三角形.
5. 如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F, AD = 12, DC = 18.
(1)求证:△ADF≌△AB'E.
(2)求线段AF的长度.
(3)求△AEF的面积.
(1)求证:△ADF≌△AB'E.
(2)求线段AF的长度.
(3)求△AEF的面积.
答案:
(1)证明:
∵四边形ABCD是矩形,
∴∠D = ∠C = ∠B = ∠BAD = 90°,AD = CB.由折叠的性质,得∠B' = ∠B = 90°,∠B'AF = ∠C = 90°,AB' = CB.
∴AD = AB',∠DAF + ∠EAF = 90°,∠BAE + ∠EAF = 90°.
∴∠DAF = ∠BAE.又
∵∠D = ∠B' = 90°,AD = AB',
∴△ADF ≌ △AB'E.
(2)解:由折叠的性质,得FA = FC.设FA = FC = x,则DF = DC - FC = 18 - x.在Rt△ADF中,AD² + DF² = AF²,
∴12² + (18 - x)² = x².解得x = 13.
∴AF = 13.
(3)解:
∵△ADF ≌ △AB'E,
∴AF = AE = 13.
∴S△AEF = 1/2 × AD × AE = 1/2 × 12 × 13 = 78.
(1)证明:
∵四边形ABCD是矩形,
∴∠D = ∠C = ∠B = ∠BAD = 90°,AD = CB.由折叠的性质,得∠B' = ∠B = 90°,∠B'AF = ∠C = 90°,AB' = CB.
∴AD = AB',∠DAF + ∠EAF = 90°,∠BAE + ∠EAF = 90°.
∴∠DAF = ∠BAE.又
∵∠D = ∠B' = 90°,AD = AB',
∴△ADF ≌ △AB'E.
(2)解:由折叠的性质,得FA = FC.设FA = FC = x,则DF = DC - FC = 18 - x.在Rt△ADF中,AD² + DF² = AF²,
∴12² + (18 - x)² = x².解得x = 13.
∴AF = 13.
(3)解:
∵△ADF ≌ △AB'E,
∴AF = AE = 13.
∴S△AEF = 1/2 × AD × AE = 1/2 × 12 × 13 = 78.
查看更多完整答案,请扫码查看