第60页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
10. 如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD = BF.
(1)求证:△ACD≌△CBF.
(2)以AD为边作等边三角形ADE,求证:四边形CDEF是平行四边形.

(1)求证:△ACD≌△CBF.
(2)以AD为边作等边三角形ADE,求证:四边形CDEF是平行四边形.
答案:
证明:
(1)
∵△ABC为等边三角形,
∴∠ACD = ∠B = 60°,
AC = CB.又
∵CD = BF,
∴△ACD ≌ △CBF.
(2)
∵△ACD ≌ △CBF,
∴∠CAD = ∠BCF,AD = CF.
∵△ADE为等边三角形,
∴AD = DE,∠ADE = 60°.
∴DE = CF.
∵∠ACD = ∠ADE = 60°,∠ADB = ∠ADE + ∠BDE = ∠ACD + ∠CAD,
∴∠CAD = ∠BDE.
又
∵∠CAD = ∠BCF,
∴∠BDE = ∠BCF.
∴DE//CF.
又
∵DE = CF,
∴四边形CDEF是平行四边形.
(1)
∵△ABC为等边三角形,
∴∠ACD = ∠B = 60°,
AC = CB.又
∵CD = BF,
∴△ACD ≌ △CBF.
(2)
∵△ACD ≌ △CBF,
∴∠CAD = ∠BCF,AD = CF.
∵△ADE为等边三角形,
∴AD = DE,∠ADE = 60°.
∴DE = CF.
∵∠ACD = ∠ADE = 60°,∠ADB = ∠ADE + ∠BDE = ∠ACD + ∠CAD,
∴∠CAD = ∠BDE.
又
∵∠CAD = ∠BCF,
∴∠BDE = ∠BCF.
∴DE//CF.
又
∵DE = CF,
∴四边形CDEF是平行四边形.
11. 如图,在Rt△ABC中,∠ACB = 90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D.(只保留作图痕迹,不写作法)
(2)在(1)所作的图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AD于点O,交AB于点F,连结DE、DF,再展回到原图形,得到四边形AEDF.
①试说明四边形AEDF为平行四边形;②若AB = 10,BC = 8,在折痕EF上有一动点P,则PC十PD的最小值为______.
(1)尺规作图:作∠BAC的平分线AM交BC于点D.(只保留作图痕迹,不写作法)
(2)在(1)所作的图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AD于点O,交AB于点F,连结DE、DF,再展回到原图形,得到四边形AEDF.
①试说明四边形AEDF为平行四边形;②若AB = 10,BC = 8,在折痕EF上有一动点P,则PC十PD的最小值为______.
答案:
解:
(1)如图所示.
(2)①由折叠可知,EF垂直平分AD,
∴AO = OD,∠AOE = ∠AOF.又
∵AD平分∠BAC,
∴∠EAO = ∠FAO.
∵AO = AO,
∴△AEO ≌ △AFO.
∴OE = OF.
∴四边形AEDF为平行四边形.
②6
(1)如图所示.
(2)①由折叠可知,EF垂直平分AD,
∴AO = OD,∠AOE = ∠AOF.又
∵AD平分∠BAC,
∴∠EAO = ∠FAO.
∵AO = AO,
∴△AEO ≌ △AFO.
∴OE = OF.
∴四边形AEDF为平行四边形.
②6
12. 如图,在▱ABCD中,AB = 5,BC = 8,∠ABC和∠BCD的平分线分别交AD于点E、F,若BE = 6,则CF = ______.

答案:
8
13. 如图,已知AB = AC,B是AD的中点,E是AB的中点.求证:CD = 2CE.

答案:
证明:如图,延长CE至点F,使EF = CE,连结AF、BF,
则CF = 2CE;
∵E是AB的中点,
∴AE = BE.
∴四边形AFBC是平行四边形.
∴AC//BF,AC = BF.
∴∠CAB = ∠FBA.又
∵AB = AC,B是AD的中点,
∴∠BCA = ∠ABC,AC = BD.
∴BD = BF.
∵∠DBC = ∠BCA + ∠CAB,∠FBC = ∠FBA + ∠ABC,
∴∠DBC = ∠FBC.
又
∵BC = BC,
∴△DBC ≌ △FBC.
∴CD = CF.
∴CD = 2CE.
则CF = 2CE;
∵E是AB的中点,
∴AE = BE.
∴四边形AFBC是平行四边形.
∴AC//BF,AC = BF.
∴∠CAB = ∠FBA.又
∵AB = AC,B是AD的中点,
∴∠BCA = ∠ABC,AC = BD.
∴BD = BF.
∵∠DBC = ∠BCA + ∠CAB,∠FBC = ∠FBA + ∠ABC,
∴∠DBC = ∠FBC.
又
∵BC = BC,
∴△DBC ≌ △FBC.
∴CD = CF.
∴CD = 2CE.
14. 方程思想如图,已知BD垂直平分AC,∠BCD = ∠ADF,AF⊥AC.
(1)求证:四边形ABDF是平行四边形.
(2)若AF = DF = 5,AD = 6,求AC的长.
(1)求证:四边形ABDF是平行四边形.
(2)若AF = DF = 5,AD = 6,求AC的长.
答案:
(1)证明:
∵BD垂直平分AC,
∴AB = CB,AD = CD.又
∵DB = DB,
∴△ADB ≌ △CDB.
∴∠BAD = ∠BCD.又
∵∠BCD = ∠ADF,
∴∠BAD = ∠ADF.
∴AB//FD.
∵BD⊥AC,AF⊥AC,
∴AF//BD.
∴四边形ABDF是平行四边形.
(2)解:
∵四边形ABDF是平行四边形,AF = DF = 5,
∴AB = BD = 5.设BE = x,则DE = 5 - x.
∵BD⊥AE,
∴AB² - BE² = AD² - DE²,即5² - x² = 6² - (5 - x)².解得x = $\frac{7}{5}$.
∴AE = $\sqrt{AB² - BE²}$ = $\frac{24}{5}$.
∴AC = 2AE = $\frac{48}{5}$.
(1)证明:
∵BD垂直平分AC,
∴AB = CB,AD = CD.又
∵DB = DB,
∴△ADB ≌ △CDB.
∴∠BAD = ∠BCD.又
∵∠BCD = ∠ADF,
∴∠BAD = ∠ADF.
∴AB//FD.
∵BD⊥AC,AF⊥AC,
∴AF//BD.
∴四边形ABDF是平行四边形.
(2)解:
∵四边形ABDF是平行四边形,AF = DF = 5,
∴AB = BD = 5.设BE = x,则DE = 5 - x.
∵BD⊥AE,
∴AB² - BE² = AD² - DE²,即5² - x² = 6² - (5 - x)².解得x = $\frac{7}{5}$.
∴AE = $\sqrt{AB² - BE²}$ = $\frac{24}{5}$.
∴AC = 2AE = $\frac{48}{5}$.
查看更多完整答案,请扫码查看