2026年点金训练精讲巧练高中数学选择性必修第二册人教A版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年点金训练精讲巧练高中数学选择性必修第二册人教A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



例1 (1)设$S_{n}$是等差数列$\{ a_{n}\}$的前$n$项和,且$a_{1}=1$,$a_{4}=7$,则$S_{9}=$
81
.
(2)设$S_{n}$为等差数列$\{ a_{n}\}$的前$n$项和,若$S_{3}=3$,$S_{6}=24$,则$a_{9}=$
15
.
(3)在等差数列$\{ a_{n}\}$中,若$a_{1}=1$,$a_{n}=-512$,前$n$项和$S_{n}=-1022$,求公差$d$.
解:由$S_{n}=\frac{n(a_{1}+a_{n})}{2}=\frac{n×(1 - 512)}{2}=-1022$,解得$n=4$.又由$a_{n}=a_{1}+(n - 1)d$,得$-512=1+(4 - 1)× d$,解得$d=-171$.
答案: 例1
(1)81 解析:设等差数列$\left\{a_{n}\right\}$的公差为$d$,则$a_{4}=a_{1}+3d=1 + 3d=7$,所以$d=2$.故$S_{9}=9a_{1}+\frac{9×8}{2}d=9+\frac{9×8}{2}×2=81$.
(2)15 解析:设等差数列$\left\{a_{n}\right\}$的公差为$d$,则$\begin{cases}S_{3}=3a_{1}+\frac{3×2}{2}d=3,\\S_{6}=6a_{1}+\frac{6×5}{2}d=24,\end{cases}$解得$\begin{cases}a_{1}=-1,\\d=2.\end{cases}$所以$a_{9}=a_{1}+8d=-1 + 8×2=15$.
(3)解:由$S_{n}=\frac{n(a_{1}+a_{n})}{2}=\frac{n×(1 - 512)}{2}=-1022$,解得$n=4$.又由$a_{n}=a_{1}+(n - 1)d$,得$-512=1+(4 - 1)× d$,解得$d=-171$.
1. (2024·全国甲卷)等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,若$S_{9}=1$,则$a_{3}+a_{7}=$(
D

A.$-2$
B.$\frac{7}{3}$
C.$1$
D.$\frac{2}{9}$
答案: 1.D 解析:(方法一:利用等差数列的基本量)设等差数列$\left\{a_{n}\right\}$的公差为$d$.由$S_{9}=1$,根据等差数列的求和公式得$S_{9}=9a_{1}+\frac{9×8}{2}d=1$,即$9a_{1}+36d=1$.又$a_{3}+a_{7}=a_{1}+2d+a_{1}+6d=2a_{1}+8d=\frac{2}{9}(9a_{1}+36d)=\frac{2}{9}$.故选D.
(方法二:利用等差数列的性质)根据等差数列的性质,得$a_{1}+a_{9}=a_{3}+a_{7}$.由$S_{9}=1$,根据等差数列的求和公式,得$S_{9}=\frac{9(a_{1}+a_{9})}{2}=\frac{9(a_{3}+a_{7})}{2}=1$,故$a_{3}+a_{7}=\frac{2}{9}$.故选D.
(方法三:特殊值法)不妨取等差数列$\left\{a_{n}\right\}$的公差$d=0$,则$S_{9}=1=9a_{1}$,所以$a_{1}=\frac{1}{9}$,则$a_{3}+a_{7}=2a_{1}=\frac{2}{9}$,故选D.
2. (2024·新高考全国Ⅱ卷)记$S_{n}$为等差数列$\{ a_{n}\}$的前$n$项和,若$a_{3}+a_{4}=7$,$3a_{2}+a_{5}=5$,则$S_{10}=$
95
.
答案: 2.95 解析:设数列$\left\{a_{n}\right\}$的公差为$d$.由题意,得$\begin{cases}a_{1}+2d+a_{1}+3d=7,\\3(a_{1}+d)+a_{1}+4d=5,\end{cases}$解得$\begin{cases}a_{1}=-4,\\d=3,\end{cases}$则$S_{10}=10a_{1}+\frac{10×9}{2}d=10×(-4)+45×3=95$.
例2 (1)两个等差数列$\{ a_{n}\}$和$\{ b_{n}\}$的前$n$项和分别为$S_{n}$,$T_{n}$,且$\frac{S_{n}}{T_{n}}=\frac{5n + 2}{n + 3}$,则$\frac{a_{2}+a_{20}}{b_{7}+b_{15}}$等于(
A
)已知等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$S_{10}=310$,$S_{20}=1220$,求$S_{30}$.
答案: 例2
(1)A 解析:因为两个等差数列$\left\{a_{n}\right\}$和$\left\{b_{n}\right\}$的前$n$项和分别为$S_{n}$,$T_{n}$,且$\frac{S_{n}}{T_{n}}=\frac{5n + 2}{n + 3}$,所以$\frac{a_{2}+a_{20}}{b_{7}+b_{15}}=\frac{a_{1}+a_{21}}{b_{1}+b_{21}}=\frac{\frac{a_{1}+a_{21}}{2}×21}{\frac{b_{1}+b_{21}}{2}×21}=\frac{S_{21}}{T_{21}}=\frac{5×21 + 2}{21 + 3}=\frac{107}{24}$.故选A.
(2)解:(方法一)设数列$\left\{a_{n}\right\}$的公差为$d$.由题意,得$\begin{cases}10a_{1}+\frac{1}{2}×10×9× d=310,\\20a_{1}+\frac{1}{2}×20×19× d=1220,\end{cases}$解得$\begin{cases}a_{1}=4,\\d=6.\end{cases}$所以$S_{30}=30×4+\frac{1}{2}×30×29×6=2730$.
(方法二)因为数列$\left\{a_{n}\right\}$为等差数列,所以$S_{10},S_{20}-S_{10},S_{30}-S_{20}$也成等差数列.所以$2(S_{20}-S_{10})=S_{10}+S_{30}-S_{20}$,即$2×(1220 - 310)=310+S_{30}-1220$,所以$S_{30}=2730$.
(方法三)设$S_{n}=An^{2}+Bn(A,B$为常数).由题意,得$\begin{cases}310=100A+10B,\\1220=400A+20B,\end{cases}$解得$\begin{cases}A=3,\\B=1.\end{cases}$所以$S_{n}=3n^{2}+n$.所以$S_{30}=3×900+30=2730$.
(方法四)设数列$\left\{a_{n}\right\}$的公差为$d$.由$S_{n}=na_{1}+\frac{n(n - 1)}{2}d$,得$\frac{S_{n}}{n}=a_{1}+(n - 1)\frac{d}{2}$,所以$\left\{\frac{S_{n}}{n}\right\}$是以$a_{1}$为首项,$\frac{d}{2}$为公差的等差数列.所以$\frac{S_{10}}{10},\frac{S_{20}}{20},\frac{S_{30}}{30}$成等差数列.所以$\frac{S_{10}}{10}+\frac{S_{30}}{30}=2×\frac{S_{20}}{20}$.所以$S_{30}=30×(\frac{S_{20}}{10}-\frac{S_{10}}{10})=30×(122 - 31)=2730$.

查看更多完整答案,请扫码查看

关闭