2025年小题狂做高中物理必修第二册人教版巅峰版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中物理必修第二册人教版巅峰版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年小题狂做高中物理必修第二册人教版巅峰版》

6. (2024安徽宣城七校联考)如图所示,$AB$杆以恒定角速度$\omega$绕$A$点在竖直平面内顺时针转动,并带动同时套在水平杆$OC$及转动杆$AB$上的小环$M$运动.已知$A$点到水平杆$OC$的距离为$h$,运动开始时$AB$杆在竖直位置.从运动开始时计时,下列说法正确的是(
C
)


A.小环$M$向$C$端匀速运动
B.小环$M$向$C$端减速运动
C.$t$时刻时,小环$M$的速度大小为$\frac{\omega h}{\cos^{2}\omega t}$
D.$t$时刻时,小环$M$的速度大小为$\frac{\omega h}{\sin\omega t}$
答案: 6.C 解析:经过时间$t$,则有$\angle OAB = \omega t$,$AM$的长度为$L_{AM} = \frac{h}{\cos\omega t}$,则$AB$杆上的$M$点绕$A$点转动的线速度为$v = \frac{\omega h}{\cos\omega t}$,将小环$M$的速度沿$AB$杆方向和垂直于$AB$杆方向分解,垂直于$AB$杆上分速度等于$M$点绕$A$点的线速度,则小环$M$的速度大小为$v' = \frac{v}{\cos\omega t}$,联立解得$v' = \frac{\omega h}{\cos^2\omega t}$,可知随着时间的增加,小环$M$向$C$端运动的速度增大,所以小环做加速运动,故C正确.
7. (2025重庆部分学校联考调研)北京时间2024年7月24日凌晨,万众瞩目的巴黎奥运会开幕式在塞纳河畔举行,各国队员有序乘船巡游,如图1所示.如图2所示,船以速率$u$沿直线水平匀速行驶时,伫立在船上的队员甲将一吉祥物(可视为质点)以相对自身的速率$v$沿垂直船速方向水平抛向同在船上的队友乙,经时间$t$,队友乙在空中接住该吉祥物.忽略空气阻力,重力加速度为$g$,则该过程中,下列说法正确的是(
D
)

A.该吉祥物抛出时的速度大小为$(u+v)$
B.该吉祥物抛出时距离船板的高度一定为$\frac{1}{2}gt^{2}$
C.停留在岸边的人观察到该吉祥物的水平射程为$(u+v)t$
D.停留在岸边的人观察到该吉祥物的水平射程为$t\sqrt{u^{2}+v^{2}}$
答案: 7.D 解析:由矢量合成法则可知,该吉祥物水平抛出时的初速度$v_0 = \sqrt{u^2 + v^2}$,A错误;经过时间$t$,该吉祥物下落的高度$h = \frac{1}{2}gt^2$,由于队员乙是在空中接住该吉祥物的,该吉祥物下落的高度并非其抛出时距离船板的高度,B错误;经过时间$t$,对于停留在岸边的观察者来说,该吉祥物的水平射程为$x = t\sqrt{u^2 + v^2}$,D正确,C错误.
8. (多选,2024浙江期末)如图甲所示为2022年北京冬奥会的跳台滑雪场地“雪如意”,其主体建筑设计灵感来自中国传统饰物“如意”.其部分赛道可简化为如图乙所示的轨道模型,斜坡可视为倾角为$\theta$的斜面,运动员(可视为质点)从跳台$a$处以速度$v$沿水平方向向左飞出,不计空气阻力,则运动员从飞出至落到足够长斜坡上的过程中,下列说法正确的是(
AC
)


A.若初速度$v$增大1倍,则运动员在空中运动的时间增大1倍
B.若初速度$v$增大1倍,则运动员在空中离坡面的最大距离增大1倍
C.若运动员的初速度变小,运动员落在斜坡上的瞬时速度方向与水平方向的夹角不变
D.运动员落在斜坡上的瞬时速度方向与水平方向的夹角为$2\theta$
答案: 8.AC 解析:运动员落在斜坡上时位移偏向角$\theta$的正切值与速度偏向角$\alpha$的正切值满足的关系为$\tan\theta = \frac{y}{x} = \frac{\frac{1}{2}gt^2}{vt} = \frac{gt}{2v} = \frac{v_y}{2v} = \frac{1}{2}\tan\alpha$,所以运动员落在斜坡上的瞬时速度方向仅与倾角$\theta$有关,与初速度大小无关,若运动员的初速度变小,运动员落在斜坡上的瞬时速度方向与水平方向的夹角不变,且根据三角函数知识可知$\alpha \neq 2\theta$,C正确,D错误;运动员在空中运动的时间为$t = \frac{2v\tan\theta}{g}$,若初速度$v$增大1倍,则运动员在空中运动的时间增大1倍,A正确;运动员在$\alpha$处的速度在垂直于斜坡方向上的分量为$v_1 = v\sin\theta$,运动员做平抛运动时,重力加速度在垂直于斜坡方向上的分量为$g_1 = g\cos\theta$,运动员在垂直于斜坡方向上做类竖直上抛运动,所以运动员在空中离坡面的最大距离为$s = \frac{v_1^2}{2g_1} = \frac{v^2\sin^2\theta}{2g\cos\theta}$,若初速度$v$增大1倍,则运动员在空中离坡面的最大距离增大3倍,B错误.
9. (多选,2024山东滨州期末)如图所示,$O$、$A$、$B$是固定斜面上的三个点,$B$、$O$间的竖直高度为$h$,$A$、$O$间的竖直高度为$2h$.一质量为$m$的小球从$O$点抛出,垂直撞在斜面上的$A$点,被垂直反弹后恰好落在斜面上的$B$点.空气阻力忽略不计,重力加速度为$g$.下列说法正确的是(
BD
)


A.由$O$点运动到$A$点和由$A$点运动到$B$点的时间之比为$2:1$
B.由$O$点运动到$A$点和由$A$点运动到$B$点的时间之比为$\sqrt{2}:1$
C.撞向$A$点的速度与从$A$点反弹的速度之比为$2:1$
D.撞向$A$点的速度与从$A$点反弹的速度之比为$\sqrt{2}:1$
答案: 9.BD 解析:设撞向A点的速度大小为$v_1$,从A点反弹的速度大小为$v_2$,从O点运动到A点逆向看成从A点运动到O点,将小球在空中的运动分解为垂直斜面和沿斜面的两个分运动,垂直斜面方向上有$t_1 = \frac{2v_1}{g\cos\theta}$,沿斜面方向有$x_1 = \frac{1}{2}g\sin\theta · t_1^2 = \frac{2h}{\sin\theta}$,同理,小球从A点运动到B点过程,垂直斜面方向上有$t_2 = \frac{2v_2}{g\cos\theta}$,沿斜面方向有$x_2 = \frac{1}{2}g\sin\theta · t_2^2 = \frac{h}{\sin\theta}$,联立解得$t_1 = \sqrt{2}t_2$,小球由O点运动到A点和由A点运动到B点的时间之比为$t_1:t_2 = \sqrt{2}:1$,小球撞向A点的速度与从A点反弹的速度之比为$v_1:v_2 = t_1:t_2 = \sqrt{2}:1$,故B、D正确.

查看更多完整答案,请扫码查看

关闭