第53页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
9. (娄底双峰县期中)如图,在$\triangle ABC$中,$\angle A = 78^{\circ}$,$AB = 4$,$AC = 6$. 将$\triangle ABC$沿图示中的虚线剪开,剪下的阴影三角形与原三角形不一定相似的是()


答案:
C
10. 如图,在$\triangle ABC$中,$D为BC$上一点,$BC = \sqrt{3}AB = 3BD$,则$\frac{AD}{AC}$的值为______.

答案:
$ \frac{\sqrt{3}}{3} $
11. 在$\triangle ABC$中,$AB = 6$,$AC = 5$,点$D在边AB$上,且$AD = 2$,点$E在边AC$上,当$AE$的长为______时,以$A$,$D$,$E为顶点的三角形与\triangle ABC$相似.
答案:
$ \frac{12}{5} $ 或 $ \frac{5}{3} $
12. 如图,在$\triangle ABC$中,$\angle B = 90^{\circ}$,$AB = 4$,$BC = 2$,以$AC为边作等腰直角三角形ACE$,$\angle ACE = 90^{\circ}$,延长$BC至点D$,使$CD = 5$,连接$DE$. 求证:$\triangle ABC \backsim \triangle CED$.

答案:
证明:$ \because \angle B = 90^{\circ} $,$ AB = 4 $,$ BC = 2 $,$ \therefore AC = \sqrt{2^{2} + 4^{2}} = 2\sqrt{5} $. $ \because CE = AC $,$ \therefore CE = 2\sqrt{5} $. $ \because \frac{AB}{CE} = \frac{4}{2\sqrt{5}} = \frac{2\sqrt{5}}{5} $,$ \frac{AC}{CD} = \frac{2\sqrt{5}}{5} $,$ \therefore \frac{AB}{CE} = \frac{AC}{CD} $. $ \because \angle B = 90^{\circ} $,$ \angle ACE = 90^{\circ} $,$ \therefore \angle BAC + \angle BCA = 90^{\circ} $,$ \angle BCA + \angle ECD = 90^{\circ} $,$ \therefore \angle BAC = \angle ECD $,$ \therefore \triangle ABC \backsim \triangle CED $.
13. 如图,在$\triangle ABC$中,点$D$,$E分别在边AB$,$AC$上,$\angle AED = \angle B$,射线$AG分别交线段DE$,$BC于点F$,$G$,且$\frac{AD}{AC} = \frac{DF}{CG}$.
(1)求证:$\triangle ADF \backsim \triangle ACG$;
(2)若$\frac{AD}{AC} = \frac{1}{3}$,求$\frac{AF}{FG}$的值.

(1)求证:$\triangle ADF \backsim \triangle ACG$;
(2)若$\frac{AD}{AC} = \frac{1}{3}$,求$\frac{AF}{FG}$的值.
答案:
(1) 证明:$ \because \angle AED = \angle B $,$ \angle DAE = \angle CAB $,$ \therefore \angle ADF = \angle C $. 又 $ \because \frac{AD}{AC} = \frac{DF}{CG} $,$ \therefore \triangle ADF \backsim \triangle ACG $.
(2) 解:由
(1) 知 $ \triangle ADF \backsim \triangle ACG $,$ \therefore \frac{AD}{AC} = \frac{AF}{AG} $. 又 $ \because \frac{AD}{AC} = \frac{1}{3} $,$ \therefore \frac{AF}{AG} = \frac{1}{3} $,$ \therefore \frac{AF}{FG} = \frac{AF}{AG - AF} = \frac{1}{2} $.
(1) 证明:$ \because \angle AED = \angle B $,$ \angle DAE = \angle CAB $,$ \therefore \angle ADF = \angle C $. 又 $ \because \frac{AD}{AC} = \frac{DF}{CG} $,$ \therefore \triangle ADF \backsim \triangle ACG $.
(2) 解:由
(1) 知 $ \triangle ADF \backsim \triangle ACG $,$ \therefore \frac{AD}{AC} = \frac{AF}{AG} $. 又 $ \because \frac{AD}{AC} = \frac{1}{3} $,$ \therefore \frac{AF}{AG} = \frac{1}{3} $,$ \therefore \frac{AF}{FG} = \frac{AF}{AG - AF} = \frac{1}{2} $.
14. (娄底新化县期末)如图,$AB // CD$,$AC与BD相交于点E$,且$\angle ACB = 90^{\circ}$,$AB = 6\sqrt{5}$,$BC = 6$,$CE = 3$.
(1)求$CD$的长;
(2)求证:$\triangle CDE \backsim \triangle BDC$.

(1)求$CD$的长;
(2)求证:$\triangle CDE \backsim \triangle BDC$.
答案:
(1) 解:$ \because \angle ACB = 90^{\circ} $,$ \therefore AC = \sqrt{AB^{2} - BC^{2}} = 12 $,$ \therefore AE = AC - CE = 9 $. $ \because AB // CD $,$ \therefore \triangle CDE \backsim \triangle ABE $,$ \therefore \frac{CD}{AB} = \frac{CE}{AE} $,$ \therefore CD = \frac{AB \cdot CE}{AE} = \frac{6\sqrt{5} \times 3}{9} = 2\sqrt{5} $.
(2) 证明:$ \because \angle ACB = 90^{\circ} $,$ \therefore BE = \sqrt{CE^{2} + BC^{2}} = 3\sqrt{5} $. $ \because AB // CD $,$ \therefore \frac{DE}{BE} = \frac{CE}{AE} = \frac{3}{9} = \frac{1}{3} $,$ \therefore DE = \sqrt{5} $,$ \therefore BD = DE + BE = 4\sqrt{5} $. $ \because \frac{DE}{CD} = \frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2} $,$ \frac{CD}{BD} = \frac{2\sqrt{5}}{4\sqrt{5}} = \frac{1}{2} $,$ \therefore \frac{DE}{CD} = \frac{CD}{BD} $. $ \because \angle D = \angle D $,$ \therefore \triangle CDE \backsim \triangle BDC $.
(1) 解:$ \because \angle ACB = 90^{\circ} $,$ \therefore AC = \sqrt{AB^{2} - BC^{2}} = 12 $,$ \therefore AE = AC - CE = 9 $. $ \because AB // CD $,$ \therefore \triangle CDE \backsim \triangle ABE $,$ \therefore \frac{CD}{AB} = \frac{CE}{AE} $,$ \therefore CD = \frac{AB \cdot CE}{AE} = \frac{6\sqrt{5} \times 3}{9} = 2\sqrt{5} $.
(2) 证明:$ \because \angle ACB = 90^{\circ} $,$ \therefore BE = \sqrt{CE^{2} + BC^{2}} = 3\sqrt{5} $. $ \because AB // CD $,$ \therefore \frac{DE}{BE} = \frac{CE}{AE} = \frac{3}{9} = \frac{1}{3} $,$ \therefore DE = \sqrt{5} $,$ \therefore BD = DE + BE = 4\sqrt{5} $. $ \because \frac{DE}{CD} = \frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2} $,$ \frac{CD}{BD} = \frac{2\sqrt{5}}{4\sqrt{5}} = \frac{1}{2} $,$ \therefore \frac{DE}{CD} = \frac{CD}{BD} $. $ \because \angle D = \angle D $,$ \therefore \triangle CDE \backsim \triangle BDC $.
查看更多完整答案,请扫码查看