第91页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
1.下列一元二次方程中,无实数根的是(
A.$x^{2}-2x-3=0$
B.$x^{2}+3x+2=0$
C.$x^{2}-2x+1=0$
D.$x^{2}+2x+3=0$
D
).A.$x^{2}-2x-3=0$
B.$x^{2}+3x+2=0$
C.$x^{2}-2x+1=0$
D.$x^{2}+2x+3=0$
答案:
1. D
2.关于$x$的一元二次方程$x^{2}+(a-2)x-5+a=0$根的情况是(
A.有两个相等的实根
B.有两个不相等的实根
C.无实数根
D.无法确定
B
).A.有两个相等的实根
B.有两个不相等的实根
C.无实数根
D.无法确定
答案:
2. B
3.已知关于$x$的方程$kx^{2}+(1-k)x-1=0$,下列说法正确的是(
A.当$k=0$时,方程无解
B.当$k=1$时,方程有一个实数解
C.当$k=-1$时,方程有两个相等的实数解
D.当$k\neq0$时,方程总有两个不相等的实数解
C
).A.当$k=0$时,方程无解
B.当$k=1$时,方程有一个实数解
C.当$k=-1$时,方程有两个相等的实数解
D.当$k\neq0$时,方程总有两个不相等的实数解
答案:
3. C
4.若关于$x$的一元二次方程$mx^{2}-2x-1=0$无实数根,则一次函数$y=mx+m$的图象不经过(
A.第一象限
B.第二象限
C.第三象限
D.第四象限
A
).A.第一象限
B.第二象限
C.第三象限
D.第四象限
答案:
4. A
5.关于$x$的一元二次方程$(m-2)x^{2}-4x+1=0$有两个实数解,则实数$m$的取值范围是(
A.$m\leq6$
B.$m\leq6$且$m\neq2$
C.$m<6$且$m\neq2$
D.$m<6$
B
).A.$m\leq6$
B.$m\leq6$且$m\neq2$
C.$m<6$且$m\neq2$
D.$m<6$
答案:
5. B
6.当$k<-\frac{1}{4}$时,关于$x$的一元二次方程$(k-2)x^{2}-(2k-1)x+k=0$的根的情况是(
A.两个相等的实根
B.两个不相等的实根
C.无实根
D.无法判断
C
).A.两个相等的实根
B.两个不相等的实根
C.无实根
D.无法判断
答案:
6. C
7.若关于$x$的方程$mx^{2}-2x+1=0$有实数根,则实数$m$的取值范围是
$m \leqslant 1$
.
答案:
$7. m \leqslant 1$
8.等腰三角形的一边长为$2$,另外两边长是方程$x^{2}-kx+16=0$的两个根,则此三角形的周长为
10
.
答案:
8. 10
9.对于一元二次方程$ax^{2}+bx+c=0(a\neq0)$,下列说法:
①若$a-b+c=0$,则它有一根为$-1$;
②若方程$ax^{2}+c=0$有两个不相等的实根,则方程$ax^{2}+bx+c=0$必有两个不相等的实根;
③若$c$是方程$ax^{2}+bx+c=0$的一个根,则一定有$ac+b+1=0$成立;
④若$b=2a+3c$,则一元二次方程$ax^{2}+bx+c=0$有两个不相等的实数根;
其中正确的
①若$a-b+c=0$,则它有一根为$-1$;
②若方程$ax^{2}+c=0$有两个不相等的实根,则方程$ax^{2}+bx+c=0$必有两个不相等的实根;
③若$c$是方程$ax^{2}+bx+c=0$的一个根,则一定有$ac+b+1=0$成立;
④若$b=2a+3c$,则一元二次方程$ax^{2}+bx+c=0$有两个不相等的实数根;
其中正确的
①②④
.
答案:
9. ①②④
查看更多完整答案,请扫码查看