1. 在半径为 6 的$\odot O$中,$60^{\circ}$圆心角所对的弧长是(
A.$\pi$
B.$2\pi$
C.$4\pi$
D.$6\pi$
B
)A.$\pi$
B.$2\pi$
C.$4\pi$
D.$6\pi$
答案:
1.B
2. 一个扇形的半径为 8 cm,弧长为$\frac{16\pi}{3}$cm,则扇形的圆心角为(
A.$60^{\circ}$
B.$120^{\circ}$
C.$150^{\circ}$
D.$180^{\circ}$
B
)A.$60^{\circ}$
B.$120^{\circ}$
C.$150^{\circ}$
D.$180^{\circ}$
答案:
2.B
3. 如图,在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$\angle B = 30^{\circ}$,$AB = 8$,以点$C$为圆心,$CA$的长为半径画弧,交$AB$于点$D$,则弧$AD$的长为(

A.$\pi$
B.$\frac{4}{3}\pi$
C.$\frac{5}{3}\pi$
D.$2\pi$
B
)A.$\pi$
B.$\frac{4}{3}\pi$
C.$\frac{5}{3}\pi$
D.$2\pi$
答案:
3.B
4. 如图,在$5×5$的正方形网格中,每个小正方形的边长都为 1,点$A$,$B$,$C$均为格点,则扇形$ABC$中$\overset{\frown}{BC}$的长等于(

A.$2\pi$
B.$3\pi$
C.$4\pi$
D.$\frac{\sqrt{17}}{2}\pi$
D
)A.$2\pi$
B.$3\pi$
C.$4\pi$
D.$\frac{\sqrt{17}}{2}\pi$
答案:
4.D
5. 如图,正六边形$ABCDEF$内接于$\odot O$,半径为 6,则这个正六边形的边心距$OM$和$\overset{\frown}{BC}$的长分别为(

A.$4$,$\frac{\pi}{3}$
B.$3\sqrt{3}$,$\pi$
C.$2\sqrt{3}$,$\frac{4\pi}{3}$
D.$3\sqrt{3}$,$2\pi$
D
)A.$4$,$\frac{\pi}{3}$
B.$3\sqrt{3}$,$\pi$
C.$2\sqrt{3}$,$\frac{4\pi}{3}$
D.$3\sqrt{3}$,$2\pi$
答案:
5.D
6. 若扇形的圆心角为$30^{\circ}$,半径为 17,则扇形的弧长为
\frac{17}{6}\pi
.(结果保留$\pi$)
答案:
$6.\frac{17}{6}\pi$
7. 如图,$\overset{\frown}{AB}$的半径$OA = 2$,$OC\perp AB$于点$C$,$\angle AOC = 60^{\circ}$.
(1) 求弦$AB$的长.
(2) 求$\overset{\frown}{AB}$的长.

(1) 求弦$AB$的长.
(2) 求$\overset{\frown}{AB}$的长.
答案:
7.解:
(1)
∵$\widehat{AB}$的半径$OA = 2$,$OC\perp AB$于点$C$,$\angle AOC = 60^{\circ}$,
$\therefore AC = \sqrt{3}$,$\therefore AB = 2AC = 2\sqrt{3}$.
(2)
∵$OC\perp AB$,$\angle AOC = 60^{\circ}$,$\therefore\angle AOB = 120^{\circ}$,
∵$OA = 2$,$\therefore\widehat{AB}$的长是$\frac{120\pi×2}{180}=\frac{4\pi}{3}$.
(1)
∵$\widehat{AB}$的半径$OA = 2$,$OC\perp AB$于点$C$,$\angle AOC = 60^{\circ}$,
$\therefore AC = \sqrt{3}$,$\therefore AB = 2AC = 2\sqrt{3}$.
(2)
∵$OC\perp AB$,$\angle AOC = 60^{\circ}$,$\therefore\angle AOB = 120^{\circ}$,
∵$OA = 2$,$\therefore\widehat{AB}$的长是$\frac{120\pi×2}{180}=\frac{4\pi}{3}$.
查看更多完整答案,请扫码查看