第40页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
1 根据题意,将条件和相应的算式或方程连起来。(方程中的x表示电脑的台数)
数码城有240台相机,_________,有多少台电脑?
电脑比相机多$\frac{2}{3}$ 相机比电脑多$\frac{2}{3}$ 相机比电脑少$\frac{2}{3}$ 电脑比相机少$\frac{2}{3}$
$240-240×\frac{2}{3}$ $240+240×\frac{2}{3}$ $(1+\frac{2}{3})x=240$ $(1-\frac{2}{3})x=240$
数码城有240台相机,_________,有多少台电脑?
电脑比相机多$\frac{2}{3}$ 相机比电脑多$\frac{2}{3}$ 相机比电脑少$\frac{2}{3}$ 电脑比相机少$\frac{2}{3}$
$240-240×\frac{2}{3}$ $240+240×\frac{2}{3}$ $(1+\frac{2}{3})x=240$ $(1-\frac{2}{3})x=240$
答案:
解析由“电脑比相机多$\frac{2}{3}$”可知,电脑数量就等于相机的数量再加上相机数量的$\frac{2}{3}$$x$表示电脑的台数,则列方程为$(1+\frac{2}{3})x=240$。同理可推断出后面两个条件相应的算式或方程。
解析由“电脑比相机多$\frac{2}{3}$”可知,电脑数量就等于相机的数量再加上相机数量的$\frac{2}{3}$$x$表示电脑的台数,则列方程为$(1+\frac{2}{3})x=240$。同理可推断出后面两个条件相应的算式或方程。
2 下面问题中,不能用方程$x-\frac{1}{4}x=60$解决的是(

C
)。
答案:
C
解析选项C中,男生人数比女生少$\frac{1}{4}$,可列等量关系式:女生人数-男生人数=女生人数的$\frac{1}{4}$,所列方程为$60-x=60×\frac{1}{4}$,所以不能用方程$x-\frac{1}{4}x=60$解决。选项A、B D都可以。
解析选项C中,男生人数比女生少$\frac{1}{4}$,可列等量关系式:女生人数-男生人数=女生人数的$\frac{1}{4}$,所列方程为$60-x=60×\frac{1}{4}$,所以不能用方程$x-\frac{1}{4}x=60$解决。选项A、B D都可以。
3 白腹锦鸡是观赏雉,在中国传统文化中是富贵吉祥的象征。一只雄性成年白腹锦鸡的身长约是150 cm,比其尾长长$\frac{1}{4}$。它的尾长约是多少厘米?
答案:
$150÷(1+\frac{1}{4})=120(\text{cm})$
答:它尾长约是120 cm。
解析将尾长看作单位“1”,身长就是单位“1”的$1+\frac{1}{4}=\frac{5}{4}$尾长=身长÷$\frac{5}{4}$。
$150÷(1+\frac{1}{4})=120(\text{cm})$
答:它尾长约是120 cm。
解析将尾长看作单位“1”,身长就是单位“1”的$1+\frac{1}{4}=\frac{5}{4}$尾长=身长÷$\frac{5}{4}$。
4 某省有一棵古柏树,如果将它被种下那年的树龄记为1年,到2025年树龄为800年,比另一棵古杉树的树龄短$\frac{1}{3}$,那么这棵古杉树是哪一年被种下的?
答案:
解析:
本题考查的知识点是分数除法的应用。
需要先求出古杉树的树龄,再根据其树龄反推种下的年份。
设古杉树的树龄为$x$年。
根据题目,古柏树的树龄是古杉树树龄的$\frac{2}{3}$(因为古柏树比古杉树短$\frac{1}{3}$),
所以有方程:
$\frac{2}{3}x=800$,
解这个方程,得到:
$x=800÷\frac{2}{3}=1200$,
即古杉树的树龄是1200年。
由于2025年古杉树的树龄为1200年,可以反推出其种下的年份为:
$2025-1200+1=826$(年)(加1是因为种下那年树龄为1年)。
答案:这棵古杉树是在826年被种下的。
本题考查的知识点是分数除法的应用。
需要先求出古杉树的树龄,再根据其树龄反推种下的年份。
设古杉树的树龄为$x$年。
根据题目,古柏树的树龄是古杉树树龄的$\frac{2}{3}$(因为古柏树比古杉树短$\frac{1}{3}$),
所以有方程:
$\frac{2}{3}x=800$,
解这个方程,得到:
$x=800÷\frac{2}{3}=1200$,
即古杉树的树龄是1200年。
由于2025年古杉树的树龄为1200年,可以反推出其种下的年份为:
$2025-1200+1=826$(年)(加1是因为种下那年树龄为1年)。
答案:这棵古杉树是在826年被种下的。
5 如图,长方形A、B的面积分别是$10\ \text{cm}^2$和$30\ \text{cm}^2$,长方形A的面积比长方形C的小$\frac{1}{3}$,求长方形D的面积。

答案:
$10÷(1-\frac{1}{3})=15(\text{cm}^2)$ $30×15÷10=45(\text{cm}^2)$
答:长方形D的面积是$45\text{cm}^2$。
解析步骤一求长方形C的面积。长方形C的面积=长方形A的面积÷$(1-\frac{1}{3})=10÷(1-\frac{1}{3})=15(\text{cm}^2)$。
步骤二求长方形D的面积。用字母表示长方形A、B、C、D的长和宽,如下图。
$S_A=a_1b_1=10\ \text{cm}^2$,$S_B=a_2b_1=30\ \text{cm}^2$,$S_C=a_1b_2=15\ \text{cm}^2$,$S_D=a_2b_2$。因为$a_1b_1×a_2b_2=a_2b_1×a_1b_2$,所以$a_2b_2=a_2b_1×a_1b_2÷(a_1b_1)=30×15÷10=45\ \text{cm}^2$,即$S_D=45\ \text{cm}^2$。
$10÷(1-\frac{1}{3})=15(\text{cm}^2)$ $30×15÷10=45(\text{cm}^2)$
答:长方形D的面积是$45\text{cm}^2$。
解析步骤一求长方形C的面积。长方形C的面积=长方形A的面积÷$(1-\frac{1}{3})=10÷(1-\frac{1}{3})=15(\text{cm}^2)$。
步骤二求长方形D的面积。用字母表示长方形A、B、C、D的长和宽,如下图。
查看更多完整答案,请扫码查看