2026年1号卷中考试题精编九年级数学安徽专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年1号卷中考试题精编九年级数学安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第96页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
22. 如图1,$\triangle ABC$的两条角平分线$AD$,$BE$相交于点$I$,$\angle ABC = 2\angle C$.
(1) 求证:$BI = BD$.
(2) 若$AB = 6$,$BD = 5$,求$BE$的长.
(3) 如图2,$AF\perp AC$交$BC$于点$F$,求证:$CF = 2AB$.

(1) 求证:$BI = BD$.
(2) 若$AB = 6$,$BD = 5$,求$BE$的长.
(3) 如图2,$AF\perp AC$交$BC$于点$F$,求证:$CF = 2AB$.
答案:
22.解:
(1)$\because AD$平分$\angle BAC$,$BE$平分$\angle ABC$,
$\therefore\angle BAD=\angle CAD,\angle ABE=\angle CBE$,
$\because\angle BDI=\angle C+\angle CAD=\angle C+\frac{1}{2}\angle BAC,\angle BID=\angle ABI+\angle BAI=\angle ABI+\frac{1}{2}\angle BAC$,$\because\angle ABC=2\angle C$,$\therefore\angle ABI=\angle C$,
$\therefore\angle BDI=\angle BID$,$\therefore BI=BD$. (4分)
(2)如图1,在$AC$上截取$AG=AB$,连接$DG$,易证$\triangle ABD\cong\triangle AGD$,
$\therefore DG=BD,\angle ABD=\angle AGD$,
$\because\angle ABC=2\angle C$,$\therefore\angle AGD=2\angle C$,
$\therefore CG=DG=BD$,$\therefore AC=AG+CG=AB+BD$.
$\because AB=6,BD=5$,$\therefore AC=11$.
$\because\angle ABE=\frac{1}{2}\angle ABC$,$\angle C=\frac{1}{2}\angle ABC$,$\therefore\angle ABE=\angle C$.
又$\because\angle BAE=\angle CAB$,$\therefore\triangle ABE\backsim\triangle ACB$,
$\therefore\frac{AB}{AC}=\frac{AE}{AB}$,$\therefore AB^{2}=AE· AC$,
$\because\angle EBC=\angle C$,$\therefore BE=CE$,
$\therefore AB^{2}=AC(AC-BE)$,$\therefore BE=\frac{85}{11}$. (9分)
(3)如图2,取$CF$中点$M$,连接$AM$.
在$Rt\triangle ACF$中,$AM=CM=\frac{1}{2}CF$,$\therefore\angle AMF=2\angle C$,
又$\because\angle ABC=2\angle C$,$\therefore\angle ABC=\angle AMF$,
$\therefore AM=AB$,$\therefore CF=2AB$. (12分)
(1)$\because AD$平分$\angle BAC$,$BE$平分$\angle ABC$,
$\therefore\angle BAD=\angle CAD,\angle ABE=\angle CBE$,
$\because\angle BDI=\angle C+\angle CAD=\angle C+\frac{1}{2}\angle BAC,\angle BID=\angle ABI+\angle BAI=\angle ABI+\frac{1}{2}\angle BAC$,$\because\angle ABC=2\angle C$,$\therefore\angle ABI=\angle C$,
$\therefore\angle BDI=\angle BID$,$\therefore BI=BD$. (4分)
(2)如图1,在$AC$上截取$AG=AB$,连接$DG$,易证$\triangle ABD\cong\triangle AGD$,
$\therefore DG=BD,\angle ABD=\angle AGD$,
$\because\angle ABC=2\angle C$,$\therefore\angle AGD=2\angle C$,
$\therefore CG=DG=BD$,$\therefore AC=AG+CG=AB+BD$.
$\because AB=6,BD=5$,$\therefore AC=11$.
$\because\angle ABE=\frac{1}{2}\angle ABC$,$\angle C=\frac{1}{2}\angle ABC$,$\therefore\angle ABE=\angle C$.
又$\because\angle BAE=\angle CAB$,$\therefore\triangle ABE\backsim\triangle ACB$,
$\therefore\frac{AB}{AC}=\frac{AE}{AB}$,$\therefore AB^{2}=AE· AC$,
$\because\angle EBC=\angle C$,$\therefore BE=CE$,
$\therefore AB^{2}=AC(AC-BE)$,$\therefore BE=\frac{85}{11}$. (9分)
(3)如图2,取$CF$中点$M$,连接$AM$.
在$Rt\triangle ACF$中,$AM=CM=\frac{1}{2}CF$,$\therefore\angle AMF=2\angle C$,
又$\because\angle ABC=2\angle C$,$\therefore\angle ABC=\angle AMF$,
$\therefore AM=AB$,$\therefore CF=2AB$. (12分)
23. 在平面直角坐标系中,$O$为坐标原点,抛物线$y = ax^{2} + bx + c$($a$,$b$,$c$为常数,且$a\neq 0$)与$x$轴交于$A(-1,0)$,$B(3,0)$两点,与$y$轴交于点$C(0,3)$.
(1) 求抛物线的函数表达式.
(2) $P$,$Q$两点均在抛物线上,$PD\perp x$轴于点$D$,$QE\perp x$轴于点$E$,$AP$与$y$轴交于点$F$.已知$P$,$Q$两点的横坐标分别为$t$和$t + 1$,且$0 \lt t \lt 2$.
(ⅰ) 分别记$\triangle AOF$和$\triangle CPF$的面积为$S_{\triangle AOF}$,$S_{\triangle CPF}$,求$S_{\triangle AOF} + S_{\triangle CPF}$的最小值.
(ⅱ) 分别记$\triangle OPD$和$\triangle OQE$的面积为$S_{\triangle OPD}$,$S_{\triangle OQE}$,若$S_{\triangle OPD} = S_{\triangle OQE}$,求$t$的值.
(1) 求抛物线的函数表达式.
(2) $P$,$Q$两点均在抛物线上,$PD\perp x$轴于点$D$,$QE\perp x$轴于点$E$,$AP$与$y$轴交于点$F$.已知$P$,$Q$两点的横坐标分别为$t$和$t + 1$,且$0 \lt t \lt 2$.
(ⅰ) 分别记$\triangle AOF$和$\triangle CPF$的面积为$S_{\triangle AOF}$,$S_{\triangle CPF}$,求$S_{\triangle AOF} + S_{\triangle CPF}$的最小值.
(ⅱ) 分别记$\triangle OPD$和$\triangle OQE$的面积为$S_{\triangle OPD}$,$S_{\triangle OQE}$,若$S_{\triangle OPD} = S_{\triangle OQE}$,求$t$的值.
答案:
23.解:
(1)由题意得,$\begin{cases}a-b+c=0,\\9a+3b+c=0,\\c=3,\end{cases}$解得$\begin{cases}a=-1,\\b=2,\\c=3,\end{cases}$
$\therefore$抛物线的函数表达式为$y=-x^{2}+2x+3$. (4分)
(2)(i)如图1,设$P(t,-t^{2}+2t+3)$,直线$PA$的函数表达式为$y=mx+n$,
$\because$直线$PA$经过$A(-1,0),P(t,-t^{2}+2t+3)$,$\therefore\begin{cases}-m+n=0,\\mt+n=-t^{2}+2t+3,\end{cases}$
$\therefore mt+m=-t^{2}+2t+3$,
即$m(t+1)=-(t+1)(t-3)$.
$\because0<t<2$,$\therefore t+1>0$,
$\therefore m=-t+3$,$\therefore n=-t+3$,
$\therefore$直线$PA$的函数表达式为$y=(-t+3)x+(-t+3)$,
$\therefore OF=-t+3,CF=3-(-t+3)=t$,
$\therefore S_{\triangle AOF}=\frac{1}{2}(-t+3),S_{\triangle CPF}=\frac{1}{2}t^{2}$,
$\therefore S_{\triangle AOF}+S_{\triangle CPF}=\frac{1}{2}t^{2}+\frac{1}{2}(-t+3)=\frac{1}{2}(t-\frac{1}{2})^{2}+\frac{11}{8}$,
$\because0<t<2$,
$\therefore S_{\triangle AOF}+S_{\triangle CPF}$的最小值为$\frac{11}{8}$. (9分)
(ii)如图2,$\because P(t,-t^{2}+2t+3),Q(t+1,-(t+1)^{2}+2(t+1)+3)$,即$Q(t+1,-t^{2}+4)$,
$\therefore S_{\triangle OPD}=\frac{1}{2}t(-t^{2}+2t+3),S_{\triangle OQE}=\frac{1}{2}(t+1)·(-t^{2}+4)$,
$\because S_{\triangle OPD}=S_{\triangle OQE}$,
$\therefore\frac{1}{2}t(-t^{2}+2t+3)=\frac{1}{2}(t+1)(-t^{2}+4)$,
即$t(t+1)(t-3)=(t+1)(t^{2}-4)$,
$\because0<t<2$,$\therefore t+1>0$,
$\therefore t^{2}-3t=t^{2}-4$,解得$t=\frac{4}{3}$. (14分)
(1)由题意得,$\begin{cases}a-b+c=0,\\9a+3b+c=0,\\c=3,\end{cases}$解得$\begin{cases}a=-1,\\b=2,\\c=3,\end{cases}$
$\therefore$抛物线的函数表达式为$y=-x^{2}+2x+3$. (4分)
(2)(i)如图1,设$P(t,-t^{2}+2t+3)$,直线$PA$的函数表达式为$y=mx+n$,
$\because$直线$PA$经过$A(-1,0),P(t,-t^{2}+2t+3)$,$\therefore\begin{cases}-m+n=0,\\mt+n=-t^{2}+2t+3,\end{cases}$
$\therefore mt+m=-t^{2}+2t+3$,
即$m(t+1)=-(t+1)(t-3)$.
$\because0<t<2$,$\therefore t+1>0$,
$\therefore m=-t+3$,$\therefore n=-t+3$,
$\therefore$直线$PA$的函数表达式为$y=(-t+3)x+(-t+3)$,
$\therefore OF=-t+3,CF=3-(-t+3)=t$,
$\therefore S_{\triangle AOF}=\frac{1}{2}(-t+3),S_{\triangle CPF}=\frac{1}{2}t^{2}$,
$\therefore S_{\triangle AOF}+S_{\triangle CPF}=\frac{1}{2}t^{2}+\frac{1}{2}(-t+3)=\frac{1}{2}(t-\frac{1}{2})^{2}+\frac{11}{8}$,
$\because0<t<2$,
$\therefore S_{\triangle AOF}+S_{\triangle CPF}$的最小值为$\frac{11}{8}$. (9分)
(ii)如图2,$\because P(t,-t^{2}+2t+3),Q(t+1,-(t+1)^{2}+2(t+1)+3)$,即$Q(t+1,-t^{2}+4)$,
$\therefore S_{\triangle OPD}=\frac{1}{2}t(-t^{2}+2t+3),S_{\triangle OQE}=\frac{1}{2}(t+1)·(-t^{2}+4)$,
$\because S_{\triangle OPD}=S_{\triangle OQE}$,
$\therefore\frac{1}{2}t(-t^{2}+2t+3)=\frac{1}{2}(t+1)(-t^{2}+4)$,
即$t(t+1)(t-3)=(t+1)(t^{2}-4)$,
$\because0<t<2$,$\therefore t+1>0$,
$\therefore t^{2}-3t=t^{2}-4$,解得$t=\frac{4}{3}$. (14分)
查看更多完整答案,请扫码查看