2026年1号卷中考试题精编九年级数学安徽专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年1号卷中考试题精编九年级数学安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年1号卷中考试题精编九年级数学安徽专版》

7. 在$Rt\triangle ABC$中,$\angle ACB=90^{\circ}$,$CD$是$AB$边上的中线,$CE\perp AB$于点$E$,若$AC=2BC$,则$\cos\angle DCE$的值为 (
D
)


A.$\frac{1}{2}$
B.$\frac{\sqrt{5}}{5}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
答案: 7 D 【解析】设$BC = x$,则$AC = 2x$,则$AB = \sqrt{AC^2 + BC^2} = \sqrt{5}x$,由条件可知$\sin \angle CAE = \frac{CE}{AC} = \frac{BC}{AB} = \frac{x}{\sqrt{5}x} = \frac{\sqrt{5}}{5}$,$\therefore CE = \frac{\sqrt{5}}{5}AC = \frac{2\sqrt{5}x}{5}$,由条件可知$AD = CD = \frac{1}{2}AB = \frac{\sqrt{5}}{2}x$,$\therefore \cos \angle DCE = \frac{CE}{CD} = \frac{\frac{2\sqrt{5}x}{5}}{\frac{\sqrt{5}x}{2}} = \frac{4}{5}$.故选D.
8. 新趋势·代数推理 已知实数$x,y$满足$x+3y-6=0$,$y>3$,$x>-5$,下列结论正确的是 (
C
)

A.$x>-3$
B.$y>\frac{11}{3}$
C.$-\frac{4}{3}<x+y<0$
D.$8<y-x<\frac{20}{3}$
答案: 8 C 【解析】逐项分析如下.故选C.
选项 分析 结论是否正确
A $\because x + 3y - 6 = 0$,$\therefore y = \frac{6 - x}{3}$,$\because y > 3$,$\therefore \frac{6 - x}{3} > 3$,解得$x < -3$,又$\because x > -5$,$\therefore -5 < x < -3$. 否
B $\because x + 3y - 6 = 0$,$\therefore x = 6 - 3y$,$\because x > -5$,$\therefore 6 - 3y > -5$,解得$y < \frac{11}{3}$,$\therefore 3 < y < \frac{11}{3}$. 否
C $\because x + 3y - 6 = 0$,$\therefore x + y = 6 - 2y$,$\because 3 < y < \frac{11}{3}$,$\therefore \frac{-22}{3} < -2y < -6$,$\therefore -\frac{4}{3} < 6 - 2y < 0$,$\therefore -\frac{4}{3} < x + y < 0$. 是
D $\because x + 3y - 6 = 0$,$\therefore y - x = 4y - 6$,$\because 3 < y < \frac{11}{3}$,$\therefore 12 < 4y < \frac{44}{3}$,$\therefore 6 < 4y - 6 < \frac{26}{3}$,$\therefore 6 < y - x < \frac{26}{3}$. 否
9. 如图1,平行四边形$ABCD$中,$AB=3$,$BD\perp AB$,动点$F$从点$A$出发,沿折线$ADB$以每秒1个单位长度的速度运动到点$B$.图2是点$F$运动时,$\triangle FBC$的面积$y$随时间$x$变化的图象,则$m$的值为 (
A
)

A.$6$
B.$10$
C.$12$
D.$20$
答案: 9 A 【解析】由图可知,$AD = a$,$AD + BD = 9$,则$BD = 9 - a$,由$BD \perp AB$,可得$\triangle ABD$是直角三角形,由勾股定理可得$a^2 = (9 - a)^2 + 3^2$,解得$a = 5$,即$AD = 5$,$\therefore BD = 4$,$\therefore m = S_{\triangle BDC} = \frac{1}{2} × 3 × 4 = 6$.故选A.
10. 如图,动点$P$在等边$\triangle ABC$的边$AC$上,$AB=2$,连接$PB$,$AD\perp PB$于点$D$,以$AD$为边在其右侧作等边$\triangle ADE$,$ED$的延长线交$BC$于点$F$,连接$PF$,则下列结论错误的是 (
C
)


A.$PB$的最小值是$\sqrt{3}$
B.$CD$的最小值是$\sqrt{3}-1$
C.$PF$的最小值是$1$
D.$EF$的最大值是$2$
答案:
10 C 【解析】逐项分析如下.故选C.
选项 分析 结论是否正确
A 由题意得,$AB = AC = BC = 2$,$\angle ABC = \angle C = 60°$,$\therefore$当$BP \perp AC$时,$BP$最小,此时$CP = AP = \frac{1}{2}AC = 1$,$\therefore PB$的最小值为$\sqrt{BC^2 - CP^2} = \sqrt{3}$. 是
B 如图,作$CM \perp AB$于$M$,连接$CD$,$DM$,则$AM = BM = \frac{1}{2}AB = 1$,$CM = \sqrt{BC^2 - BM^2} = \sqrt{3}$,$\because CD \geq CM - DM$,$\therefore$当$C$,$D$,$M$在同一直线上时,$CD$的值最小,$\because AD \perp PB$,$\therefore DM = \frac{1}{2}AB = 1$,$\therefore CD$的最小值为$CM - DM = \sqrt{3} - 1$. 是
C 如图,连接$AF$,$EC$,作$CG // BD$,交$EF$的延长线于$G$,由题意得,$AB = AC$,$AD = AE$,$\angle BAC = \angle DAE = 60°$,$\therefore \angle BAC - \angle DAC = \angle DAE - \angle DAC$,即$\angle BAD = \angle CAE$,$\therefore \triangle BAD \cong \triangle CAE (SAS)$,$\therefore BD = CE$,$\angle AEC = \angle ADB = 90°$,$\because \angle ADP = 180° - \angle ADB = 90°$,$\therefore \angle EDP = \angle ADP - \angle ADE = 30°$,$\angle CEG = \angle AEC - \angle AED = 30°$,$\therefore \angle BDG = \angle EDP = 30°$,$\because CG // BD$,由平行线的性质可得$\angle BDG = \angle G = 30°$,$\angle CEG = \angle G = 30°$,$\therefore CG = CE = BD$,$\because \angle CFG = \angle BFD$,$\therefore \triangle BDF \cong \triangle CGF (AAS)$,$\therefore BF = CF = \frac{1}{2}BC = 1$,$\therefore AF \perp BC$,即$\angle AFC = 90°$,$\therefore \angle AFC + \angle AEC = 180°$,$\therefore A$,$F$,$C$,$E$四点共圆,$\therefore$当$EF$取最大值时,$EF$等于直径$AC$,即为2. 是
D 当$FP \perp AC$时,$FP$最小,此时$FP = CF · \sin 60° = \frac{\sqrt{3}}{2}$. 否
图片编号10续表中的图
思路点拨
由垂线段最短可得,当$BP \perp AC$时,$BP$最小,此时$CP = AP = 1$,再由勾股定理计算即可判断选项A;作$CM \perp AB$于$M$,连接$CD$,$DM$,由$CD \geq CM - DM$,可得当$C$,$D$,$M$在同一直线上时,$CD$的值最小,即可判断选项B;证明$A$,$F$,$C$,$E$四点共圆,得出当$EF$取最大值时,$EF$等于直径$AC$,即可判断选项D;再由垂线段最短结合解直角三角形即可判断选项C.
11. 因式分解:$3a^{2}-18a+27=$
$3(a - 3)^2$
.
答案: 11 $3(a - 3)^2$
12. 某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是
$\frac{1}{6}$
.
答案: 12 $\frac{1}{6}$
13. 如图,$AE$是直径,点$B,C,D$在半圆上,若$\angle B=120^{\circ}$,则$\angle D=$
150
$^{\circ}$.
答案: 13 150 【解析】如图,连接$BE$,由条件可知$\angle ABE = 90°$,$\therefore \angle CBE = \angle ABC - \angle ABE = 120° - 90° = 30°$,$\therefore \angle D + \angle CBE = 180°$,$\because \angle D = 180° - \angle CBE = 150°$.

查看更多完整答案,请扫码查看

关闭