2026年1号卷中考试题精编九年级数学安徽专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年1号卷中考试题精编九年级数学安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第48页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
22. 如图,矩形$ABCD$中,$P$为对角线$BD$上一动点,过$P$点作$PE// CD$交$AC$于点$E$,作$PF// AC$交$AD$于点$F$,连接$DE,BE$.
(1)若$FP = EP$.
①求证:$DE$平分$\angle BDC$.
②求证:$\frac{1}{AB}+\frac{1}{AO}=\frac{1}{FP}$.
(2)已知$DO = DE = 4$,且$P$为$DO$的中点,求矩形$ABCD$的周长.

(1)若$FP = EP$.
①求证:$DE$平分$\angle BDC$.
②求证:$\frac{1}{AB}+\frac{1}{AO}=\frac{1}{FP}$.
(2)已知$DO = DE = 4$,且$P$为$DO$的中点,求矩形$ABCD$的周长.
答案:
22 解:
(1)①证明:
∵四边形ABCD是矩形,
∴OA = OD,
∴∠OAD = ∠ODA,
∵PF//AC,
∴∠PFD = ∠OAD,
∴∠PFD = ∠PDF,
∴PF = PD.
∵FP = EP,
∴PD = PE,
∴∠PDE = ∠PED,
∵PE//CD,
∴∠PED = ∠CDE,
∴∠ODE = ∠CDE,
∴DE平分∠BDC.
②证明:
∵PE//CD,
∴△OPE∽△ODC,
∴$\frac{OP}{OD}$ = $\frac{PE}{CD}$,
∵AB = CD,OP = OD - PD = OA - PF,PE = PF,
∴$\frac{OA - PF}{OA}$ = $\frac{PF}{AB}$,
整理可得$\frac{1}{AB}$ + $\frac{1}{AO}$ = $\frac{1}{FP}$.
(2)如图,作DG⊥AC于点G,
∵DO = DE = 4,且P为DO中点,
∴PO = PD = 2,OC = OD = 4,
∵△OPE∽△ODC,
∴$\frac{OP}{OD}$ = $\frac{OE}{OC}$,即$\frac{2}{4}$ = $\frac{OE}{4}$,
∴OE = 2,
∴EC = OC - OE = 2.
∵DG⊥AC,
∴OG = EG = $\frac{1}{2}$OE = 1,
∴DG = $\sqrt{OD² - OG²}$ = $\sqrt{15}$,GC = GE + EC = 1 + 2 = 3,
∴CD = $\sqrt{GC² + DG²}$ = 2$\sqrt{6}$,AD = $\sqrt{AC² - CD²}$ = 2$\sqrt{10}$,
∴矩形ABCD的周长 = 2(AD + CD) = 2(2$\sqrt{10}$ + 2$\sqrt{6}$) = 4$\sqrt{10}$ + 4$\sqrt{6}$.
(1)①证明:
∵四边形ABCD是矩形,
∴OA = OD,
∴∠OAD = ∠ODA,
∵PF//AC,
∴∠PFD = ∠OAD,
∴∠PFD = ∠PDF,
∴PF = PD.
∵FP = EP,
∴PD = PE,
∴∠PDE = ∠PED,
∵PE//CD,
∴∠PED = ∠CDE,
∴∠ODE = ∠CDE,
∴DE平分∠BDC.
②证明:
∵PE//CD,
∴△OPE∽△ODC,
∴$\frac{OP}{OD}$ = $\frac{PE}{CD}$,
∵AB = CD,OP = OD - PD = OA - PF,PE = PF,
∴$\frac{OA - PF}{OA}$ = $\frac{PF}{AB}$,
整理可得$\frac{1}{AB}$ + $\frac{1}{AO}$ = $\frac{1}{FP}$.
(2)如图,作DG⊥AC于点G,
∵DO = DE = 4,且P为DO中点,
∴PO = PD = 2,OC = OD = 4,
∵△OPE∽△ODC,
∴$\frac{OP}{OD}$ = $\frac{OE}{OC}$,即$\frac{2}{4}$ = $\frac{OE}{4}$,
∴OE = 2,
∴EC = OC - OE = 2.
∵DG⊥AC,
∴OG = EG = $\frac{1}{2}$OE = 1,
∴DG = $\sqrt{OD² - OG²}$ = $\sqrt{15}$,GC = GE + EC = 1 + 2 = 3,
∴CD = $\sqrt{GC² + DG²}$ = 2$\sqrt{6}$,AD = $\sqrt{AC² - CD²}$ = 2$\sqrt{10}$,
∴矩形ABCD的周长 = 2(AD + CD) = 2(2$\sqrt{10}$ + 2$\sqrt{6}$) = 4$\sqrt{10}$ + 4$\sqrt{6}$.
23. 如图,抛物线$y = ax^{2}+bx + 6$与$x$轴交于点$A,B$,与$y$轴交于点$C$,$OB = OC = 3OA$.
(1)求抛物线的对称轴.
(2)点$P(m,n)(m\geq2)$是抛物线上一个动点,连接$AP,CP$,$AP$交$y$轴于点$D$,作$PQ\perp x$轴于点$Q$.
①若点$Q$是$OB$的中点,求$\triangle PAC$的面积.
②若以点$C,D,P,Q$为顶点的四边形为平行四边形,求$m$的值.

(1)求抛物线的对称轴.
(2)点$P(m,n)(m\geq2)$是抛物线上一个动点,连接$AP,CP$,$AP$交$y$轴于点$D$,作$PQ\perp x$轴于点$Q$.
①若点$Q$是$OB$的中点,求$\triangle PAC$的面积.
②若以点$C,D,P,Q$为顶点的四边形为平行四边形,求$m$的值.
答案:
23 解:
(1)由题意得,c = 6 = OC = OB = 3AO,则点A,B,C的坐标分别为(- 2,0),(6,0),(0,6),则抛物线的表达式为y = a(x + 2)(x - 6) = a(x² - 4x - 12),
∴ - 12a = 6,即a = - $\frac{1}{2}$,
∴抛物线的表达式为y = - $\frac{1}{2}$x² + 2x + 6,
∴对称轴为直线x = 2.
(2)设点P(m,- $\frac{1}{2}$m² + 2m + 6),由点A,P的坐标,得直线AP的表达式为y = - $\frac{1}{2}$(m - 6)(x + 2),则点D(0,6 - m).
①
∵Q是OB中点,
∴Q(3,0),P(3,$\frac{15}{2}$),
∴OQ = 3,PQ = $\frac{15}{2}$,
∴S△APC = S△AOC + S梯形COQP - S△APQ
= $\frac{1}{2}$×2×6 + $\frac{1}{2}$×($\frac{15}{2}$ + 6)×3 - $\frac{1}{2}$×(2 + 3)×$\frac{15}{2}$
= 6 + $\frac{81}{4}$ - $\frac{75}{4}$ = $\frac{15}{2}$.
②(ⅰ)当CQ为对角线时,PQ = CD,P在Q上方,
∴6 - (6 - m) = - $\frac{1}{2}$m² + 2m + 6,
解得m = 1 ± $\sqrt{13}$,
∵m ≥ 2,
∴m = 1 + $\sqrt{13}$;
(ⅱ)当CP为对角线时,PQ = CD,P在Q下方,
∴6 - (6 - m) = - (- $\frac{1}{2}$m² + 2m + 6),
解得m = 3 ± $\sqrt{21}$,
∵m ≥ 2,
∴m = 3 + $\sqrt{21}$.
综上,m的值为1 + $\sqrt{13}$或3 + $\sqrt{21}$.
一题多解
(2)①
∵Q是OB中点,
∴Q(3,0),P(3,$\frac{15}{2}$)
设直线AP的表达式为y = kx + b₁,则$\begin{cases}-2k + b₁ = 0\\3k + b₁ = \frac{15}{2}\end{cases}$,解得$\begin{cases}k = \frac{3}{2}\\b₁ = 3\end{cases}$,
∴直线AP的表达式为y = $\frac{3}{2}$x + 3.
令x = 0,得y = 3,
∴D(0,3),
∴S△APC = $\frac{1}{2}$CD×|x_P - x_A| = $\frac{1}{2}$×3×5 = $\frac{15}{2}$.
23 解:
(1)由题意得,c = 6 = OC = OB = 3AO,则点A,B,C的坐标分别为(- 2,0),(6,0),(0,6),则抛物线的表达式为y = a(x + 2)(x - 6) = a(x² - 4x - 12),
∴ - 12a = 6,即a = - $\frac{1}{2}$,
∴抛物线的表达式为y = - $\frac{1}{2}$x² + 2x + 6,
∴对称轴为直线x = 2.
(2)设点P(m,- $\frac{1}{2}$m² + 2m + 6),由点A,P的坐标,得直线AP的表达式为y = - $\frac{1}{2}$(m - 6)(x + 2),则点D(0,6 - m).
①
∵Q是OB中点,
∴Q(3,0),P(3,$\frac{15}{2}$),
∴OQ = 3,PQ = $\frac{15}{2}$,
∴S△APC = S△AOC + S梯形COQP - S△APQ
= $\frac{1}{2}$×2×6 + $\frac{1}{2}$×($\frac{15}{2}$ + 6)×3 - $\frac{1}{2}$×(2 + 3)×$\frac{15}{2}$
= 6 + $\frac{81}{4}$ - $\frac{75}{4}$ = $\frac{15}{2}$.
②(ⅰ)当CQ为对角线时,PQ = CD,P在Q上方,
∴6 - (6 - m) = - $\frac{1}{2}$m² + 2m + 6,
解得m = 1 ± $\sqrt{13}$,
∵m ≥ 2,
∴m = 1 + $\sqrt{13}$;
(ⅱ)当CP为对角线时,PQ = CD,P在Q下方,
∴6 - (6 - m) = - (- $\frac{1}{2}$m² + 2m + 6),
解得m = 3 ± $\sqrt{21}$,
∵m ≥ 2,
∴m = 3 + $\sqrt{21}$.
综上,m的值为1 + $\sqrt{13}$或3 + $\sqrt{21}$.
一题多解
(2)①
∵Q是OB中点,
∴Q(3,0),P(3,$\frac{15}{2}$)
设直线AP的表达式为y = kx + b₁,则$\begin{cases}-2k + b₁ = 0\\3k + b₁ = \frac{15}{2}\end{cases}$,解得$\begin{cases}k = \frac{3}{2}\\b₁ = 3\end{cases}$,
∴直线AP的表达式为y = $\frac{3}{2}$x + 3.
令x = 0,得y = 3,
∴D(0,3),
∴S△APC = $\frac{1}{2}$CD×|x_P - x_A| = $\frac{1}{2}$×3×5 = $\frac{15}{2}$.
查看更多完整答案,请扫码查看