2026年1号卷中考试题精编九年级数学安徽专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年1号卷中考试题精编九年级数学安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第78页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
22. 如图,在正方形$ABCD$中,点$O$是线段$AD$的中点,点$F$是线段$BC$上的动点,连接$OC$与$DF$交于点$P$,连接$AP$并延长交$CD$于点$E$.
(1)①如图1,当点$F$与点$B$重合时,求证:$DE=OD$.
②如图2,当点$F$是线段$BC$的中点时,求$\frac{DE}{DC}$的值.
(2)如图3,若$DE=CF$,求证:$DE^{2}=CE· CD$.

(1)①如图1,当点$F$与点$B$重合时,求证:$DE=OD$.
②如图2,当点$F$是线段$BC$的中点时,求$\frac{DE}{DC}$的值.
(2)如图3,若$DE=CF$,求证:$DE^{2}=CE· CD$.
答案:
22 解:
(1)①证明:$\because$四边形$ABCD$是正方形,
$\therefore \angle PDA = \angle PDC$,$DA = DC$,
在$\triangle PDA$和$\triangle PDC$中,$\begin{cases}\angle PDA = \angle PDC,\\DP = DP,\\DA = DC,\end{cases}$
$\therefore \triangle PDA \cong \triangle PDC (SAS)$,$\therefore \angle DAE = \angle DCO$.
在$\triangle ADE$和$\triangle CDO$中,$\begin{cases}\angle ADE = \angle CDO = 90°,\\AD = CD,\\\angle DAE = \angle DCO,\end{cases}$
$\therefore \triangle ADE \cong \triangle CDO (ASA)$,
$\therefore DE = OD$.(4分)
②如图,连接$OF$,交$AE$于点$G$.
$\because$四边形$ABCD$是正方形,
$\therefore AD = BC$,$AD // BC$,
$\because$点$O$,$F$分别是$AD$,$BC$的中点,
$\therefore OD = FC$,
$\therefore$四边形$ODCF$是平行四边形,
$\therefore OP = CP$,$OF // CD$,
$\therefore \angle POG = \angle PCE$,$\angle PGO = \angle PEC$,
$\therefore \triangle GOP \cong \triangle ECP (AAS)$,
$\therefore OG = CE$.
$\because OF // CD$,$\therefore \triangle AOG \sim \triangle ADE$,
$\therefore \frac{OG}{DE} = \frac{AO}{AD} = \frac{1}{2}$,
$\because CE = \frac{1}{2}DE$,
$\therefore \frac{DC}{DE} = \frac{CE + DE}{DE} = \frac{\frac{1}{2}DE + DE}{DE} = \frac{3}{2}$,
$\because \frac{DE}{DC} = \frac{2}{3}$.(8分)

(2)证明:$\because CF = DE$,$\angle FCD = \angle EDA = 90°$,$CD = DA$,
$\therefore \triangle FCD \cong \triangle EDA (SAS)$,
$\therefore \angle CDF = \angle EAD$.
$\because \angle CDF + \angle ADP = 90°$,
$\therefore \angle DAE + \angle ADP = 90°$,
$\therefore \angle APD = 90°$.
$\because OA = OD$,$\therefore OP = OA = OD$,
$\therefore \angle OAP = \angle OPA = \angle CPE$,
$\therefore \angle CPE = \angle CDP$,
又$\because \angle PCE = \angle DCP$,
$\therefore \triangle CPE \sim \triangle CDP$,
$\therefore \frac{CP}{CD} = \frac{CE}{CP}$,
$\therefore CP^2 = CE · CD$.
$\because AD // BC$,$\therefore \angle ODP = \angle CFP$,
$\because \angle ODP = \angle OPD = \angle CPF$,
$\therefore \angle CFP = \angle CPF$,
$\therefore CP = CF = DE$,
$\therefore DE^2 = CE · CD$.(12分)
22 解:
(1)①证明:$\because$四边形$ABCD$是正方形,
$\therefore \angle PDA = \angle PDC$,$DA = DC$,
在$\triangle PDA$和$\triangle PDC$中,$\begin{cases}\angle PDA = \angle PDC,\\DP = DP,\\DA = DC,\end{cases}$
$\therefore \triangle PDA \cong \triangle PDC (SAS)$,$\therefore \angle DAE = \angle DCO$.
在$\triangle ADE$和$\triangle CDO$中,$\begin{cases}\angle ADE = \angle CDO = 90°,\\AD = CD,\\\angle DAE = \angle DCO,\end{cases}$
$\therefore \triangle ADE \cong \triangle CDO (ASA)$,
$\therefore DE = OD$.(4分)
②如图,连接$OF$,交$AE$于点$G$.
$\because$四边形$ABCD$是正方形,
$\therefore AD = BC$,$AD // BC$,
$\because$点$O$,$F$分别是$AD$,$BC$的中点,
$\therefore OD = FC$,
$\therefore$四边形$ODCF$是平行四边形,
$\therefore OP = CP$,$OF // CD$,
$\therefore \angle POG = \angle PCE$,$\angle PGO = \angle PEC$,
$\therefore \triangle GOP \cong \triangle ECP (AAS)$,
$\therefore OG = CE$.
$\because OF // CD$,$\therefore \triangle AOG \sim \triangle ADE$,
$\therefore \frac{OG}{DE} = \frac{AO}{AD} = \frac{1}{2}$,
$\because CE = \frac{1}{2}DE$,
$\therefore \frac{DC}{DE} = \frac{CE + DE}{DE} = \frac{\frac{1}{2}DE + DE}{DE} = \frac{3}{2}$,
$\because \frac{DE}{DC} = \frac{2}{3}$.(8分)
(2)证明:$\because CF = DE$,$\angle FCD = \angle EDA = 90°$,$CD = DA$,
$\therefore \triangle FCD \cong \triangle EDA (SAS)$,
$\therefore \angle CDF = \angle EAD$.
$\because \angle CDF + \angle ADP = 90°$,
$\therefore \angle DAE + \angle ADP = 90°$,
$\therefore \angle APD = 90°$.
$\because OA = OD$,$\therefore OP = OA = OD$,
$\therefore \angle OAP = \angle OPA = \angle CPE$,
$\therefore \angle CPE = \angle CDP$,
又$\because \angle PCE = \angle DCP$,
$\therefore \triangle CPE \sim \triangle CDP$,
$\therefore \frac{CP}{CD} = \frac{CE}{CP}$,
$\therefore CP^2 = CE · CD$.
$\because AD // BC$,$\therefore \angle ODP = \angle CFP$,
$\because \angle ODP = \angle OPD = \angle CPF$,
$\therefore \angle CFP = \angle CPF$,
$\therefore CP = CF = DE$,
$\therefore DE^2 = CE · CD$.(12分)
23. 已知二次函数$y=a(x-2)(x+a-1)$($a$为常数,且$a\neq 0$).
(1)若二次图象经过坐标原点,请求出此时函数图象的顶点坐标.
(2)二次函数的图象与$x$轴交于$A,B$两点,与$y$轴交于点$C$,当点$C$的纵坐标取到最大值时,求出此时$\triangle ABC$的面积.
(3)当$2\leqslant x\leqslant 3$时,函数在$x=3$处取得最大值,请直接写出$a$的取值范围.
(1)若二次图象经过坐标原点,请求出此时函数图象的顶点坐标.
(2)二次函数的图象与$x$轴交于$A,B$两点,与$y$轴交于点$C$,当点$C$的纵坐标取到最大值时,求出此时$\triangle ABC$的面积.
(3)当$2\leqslant x\leqslant 3$时,函数在$x=3$处取得最大值,请直接写出$a$的取值范围.
答案:
23 解:
(1)将$(0, 0)$代入$y = a(x - 2)(x + a - 1)$可得$-2a(a - 1) = 0$,
解得$a_1 = 0$(舍去),$a_2 = 1$,
$\therefore y = x(x - 2) = x^2 - 2x = (x - 1)^2 - 1$,
$\therefore$此时函数图象的顶点坐标为$(1, -1)$.(4分)
(2)令$y = 0$,则$a(x - 2)(x + a - 1) = 0$,
解得$x_1 = 2$,$x_2 = 1 - a$,
$\therefore |AB| = |2 - (1 - a)| = |1 + a|$,
当$x = 0$时,$y = -2a(a - 1) = -2a^2 + 2a = -2(a - \frac{1}{2})^2 + \frac{1}{2}$,
$\therefore$当$a = \frac{1}{2}$时,$y$有最大值$\frac{1}{2}$,
$\therefore AB = |1 + a| = \frac{3}{2}$,
$\therefore$此时$\triangle ABC$的面积为$\frac{1}{2} × \frac{3}{2} × \frac{1}{2} = \frac{3}{8}$.(8分)
(3)由$y = a(x - 2)(x + a - 1)$得,该函数图象与$x$轴的交点为$(2, 0)$,$(1 - a, 0)$,
$\therefore$抛物线的对称轴为直线$x = \frac{2 + 1 - a}{2} = \frac{3 - a}{2}$.
①当$a > 0$时,开口向上,且$1 - a < 1$,
$\therefore$抛物线的对称轴直线必在点$(2, 0)$的左侧,
当$x$离对称轴越远,$y$的值越大,即$2 \leq x \leq 3$时,函数在$x = 3$处取得最大值,
$\begin{cases}a > 0,\frac{3 - a}{2} < 2,\end{cases}$解得$a > 0$.(11分)
②当$a < 0$时,开口向下,且$1 - a > 1$,当$x$离对称轴越远,$y$的值越小,
$\therefore$抛物线的对称轴直线必在点$(1, 0)$的右侧,而当对称轴直线位于$1 < x < 3$之间时,函数不可能在$x = 3$处取得最大值,
$\therefore \frac{3 - a}{2} \geq 3$时,函数在$x = 3$处取得最大值,解得$a \leq -3$,
综上,$a$的取值范围为$a \leq -3$或$a > 0$.(14分)
(1)将$(0, 0)$代入$y = a(x - 2)(x + a - 1)$可得$-2a(a - 1) = 0$,
解得$a_1 = 0$(舍去),$a_2 = 1$,
$\therefore y = x(x - 2) = x^2 - 2x = (x - 1)^2 - 1$,
$\therefore$此时函数图象的顶点坐标为$(1, -1)$.(4分)
(2)令$y = 0$,则$a(x - 2)(x + a - 1) = 0$,
解得$x_1 = 2$,$x_2 = 1 - a$,
$\therefore |AB| = |2 - (1 - a)| = |1 + a|$,
当$x = 0$时,$y = -2a(a - 1) = -2a^2 + 2a = -2(a - \frac{1}{2})^2 + \frac{1}{2}$,
$\therefore$当$a = \frac{1}{2}$时,$y$有最大值$\frac{1}{2}$,
$\therefore AB = |1 + a| = \frac{3}{2}$,
$\therefore$此时$\triangle ABC$的面积为$\frac{1}{2} × \frac{3}{2} × \frac{1}{2} = \frac{3}{8}$.(8分)
(3)由$y = a(x - 2)(x + a - 1)$得,该函数图象与$x$轴的交点为$(2, 0)$,$(1 - a, 0)$,
$\therefore$抛物线的对称轴为直线$x = \frac{2 + 1 - a}{2} = \frac{3 - a}{2}$.
①当$a > 0$时,开口向上,且$1 - a < 1$,
$\therefore$抛物线的对称轴直线必在点$(2, 0)$的左侧,
当$x$离对称轴越远,$y$的值越大,即$2 \leq x \leq 3$时,函数在$x = 3$处取得最大值,
$\begin{cases}a > 0,\frac{3 - a}{2} < 2,\end{cases}$解得$a > 0$.(11分)
②当$a < 0$时,开口向下,且$1 - a > 1$,当$x$离对称轴越远,$y$的值越小,
$\therefore$抛物线的对称轴直线必在点$(1, 0)$的右侧,而当对称轴直线位于$1 < x < 3$之间时,函数不可能在$x = 3$处取得最大值,
$\therefore \frac{3 - a}{2} \geq 3$时,函数在$x = 3$处取得最大值,解得$a \leq -3$,
综上,$a$的取值范围为$a \leq -3$或$a > 0$.(14分)
查看更多完整答案,请扫码查看