2. 如图,△ABC 和△DEF 在4×4的正方形网格中,它们的顶点都在边长为1的小正方形的顶点位置. 试判断△ABC 与△DEF 是否相似,并证明你的结论.

答案:
解:△ABC∽△DEF.理由如下:
在正方形方格中,$BC=\sqrt{{2}^2+{2}^2}=2\sqrt{2},$
$ AB=\sqrt{{2}^2+{4}^2}=2\sqrt{5},$
$ DF=\sqrt{{1}^2+{1}^2}=\sqrt{2},$
$ DE=\sqrt{{1}^2+{3}^2}=\sqrt{10}.$
又AC=EF=2,
∴$\frac {AB}{DE}=\frac {BC}{FE}=\frac {AC}{DF}=\sqrt{2},$
∴△ABC∽△DEF.
解:△ABC∽△DEF.理由如下:
在正方形方格中,$BC=\sqrt{{2}^2+{2}^2}=2\sqrt{2},$
$ AB=\sqrt{{2}^2+{4}^2}=2\sqrt{5},$
$ DF=\sqrt{{1}^2+{1}^2}=\sqrt{2},$
$ DE=\sqrt{{1}^2+{3}^2}=\sqrt{10}.$
又AC=EF=2,
∴$\frac {AB}{DE}=\frac {BC}{FE}=\frac {AC}{DF}=\sqrt{2},$
∴△ABC∽△DEF.
3. 已知:如图,AD、A_1D_1分别是△ABC 与△A_1B_1C_1的中线,且$\frac{AB}{A_1B_1}= \frac{BC}{B_1C_1}= \frac{AD}{A_1D_1}$. 求证:$\triangle ABC \sim \triangle A_1B_1C_1$.


答案:
证明:如图,等倍延长中线AD、$A_1D_1$至M和$M_1,$连接BM和$B_1M_1,$
∵AD=DM,∠ADC=∠BDM,BD=CD,
∴△ADC≌△BDM.
同理可证$△A_1D_1C_1≌△M_1D_1B_1.$
∴BM=AC,$B_1M_1=A_1C_1.$
∵$\frac {AB}{{A}_1{B}_1}=\frac {AC}{{A}_1{C}_1}=\frac {AD}{{A}_1{D}_1},$
∴$\frac {AB}{{A}_1{B}_1}=\frac {BM}{{B}_1{M}_1}=\frac {AM}{{A}_1{M}_1},$
∴$△ABM∽△A_1B_1M_1,$
∴$∠BAM=∠B_1A_1M_1,$$∠M=∠M_1.$
由△ADC≌△MDB,得∠DAC=∠M,
由$△A_1D_1C_1≌△M_1D_1B_1$得$∠D_1A_1C_1=∠M_1,$
∴$∠DAC=∠D_1A_1C_1,$
∴$∠BAC=∠B_1A_1C_{1.}$
又
∵$\frac {AB}{{A}_1{B}_1}=\frac {AC}{{A}_1{C}_1},$
∴$△ABC∽△A_1B_1C_1.$
证明:如图,等倍延长中线AD、$A_1D_1$至M和$M_1,$连接BM和$B_1M_1,$
∵AD=DM,∠ADC=∠BDM,BD=CD,
∴△ADC≌△BDM.
同理可证$△A_1D_1C_1≌△M_1D_1B_1.$
∴BM=AC,$B_1M_1=A_1C_1.$
∵$\frac {AB}{{A}_1{B}_1}=\frac {AC}{{A}_1{C}_1}=\frac {AD}{{A}_1{D}_1},$
∴$\frac {AB}{{A}_1{B}_1}=\frac {BM}{{B}_1{M}_1}=\frac {AM}{{A}_1{M}_1},$
∴$△ABM∽△A_1B_1M_1,$
∴$∠BAM=∠B_1A_1M_1,$$∠M=∠M_1.$
由△ADC≌△MDB,得∠DAC=∠M,
由$△A_1D_1C_1≌△M_1D_1B_1$得$∠D_1A_1C_1=∠M_1,$
∴$∠DAC=∠D_1A_1C_1,$
∴$∠BAC=∠B_1A_1C_{1.}$
又
∵$\frac {AB}{{A}_1{B}_1}=\frac {AC}{{A}_1{C}_1},$
∴$△ABC∽△A_1B_1C_1.$
1. 已知:如图,在 Rt△ABC 中,∠C= 90°,点 D 在边 BC 上,且$\frac{AB}{DA}= \frac{BC}{AC}$. 求证:∠B= ∠DAC.

答案:
解:在Rt△ABC与Rt△ADC中,
∵$\frac {AB}{DA}=\frac {BC}{AC},$
∴Rt△ABC∽Rt△ADC,
∴∠B=∠DAC.
∵$\frac {AB}{DA}=\frac {BC}{AC},$
∴Rt△ABC∽Rt△ADC,
∴∠B=∠DAC.
查看更多完整答案,请扫码查看