2025年暑假总动员八年级数学沪科版合肥工业大学出版社


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假总动员八年级数学沪科版合肥工业大学出版社 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年暑假总动员八年级数学沪科版合肥工业大学出版社》

15.(福建)如图,在$Rt△ABC$中,$∠ACB= 90^{\circ }$.线段EF是由线段AB平移得到的,点F在边BC上,$△EFD$是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.
求证:
(1)$∠ADE= ∠DFC;$
(2)$CD= BF$.
答案: 证明:
(1)$ \because \angle A C B = 90 ^ { \circ } $,$ \therefore \angle A C B = \angle C D F + \angle D F C = 90 ^ { \circ } $。$ \because \triangle E F D $是以$ E F $为斜边的等腰直角三角形,$ \therefore \angle E D F = 90 ^ { \circ } $,$ D E = F D $。$ \because \angle E D F = \angle A D E + \angle C D F = 90 ^ { \circ } $,$ \therefore \angle A D E = \angle D F C $。
(2) 连接$ A E $,$ \because $线段$ E F $是由线段$ A B $平移得到的,$ \therefore E F // A B $,$ E F = A B $,$ \therefore $四边形$ A B E F $是平行四边形,$ \therefore A E // B C $,$ A E = B F $,$ \therefore \angle D A E = \angle B C A = 90 ^ { \circ } $,$ \therefore \angle D A E = \angle F C D $。在$ \triangle A D E $和$ \triangle C F D $中,$ \left\{ \begin{array} { l } { \angle D A E = \angle F C D }, \\ { \angle A D E = \angle D F C }, \\ { D E = F D }, \end{array} \right. $ $ \therefore \triangle A D E \cong \triangle C F D ( A A S ) $,$ \therefore A E = C D $。$ \because A E = B F $,$ \therefore C D = B F $。
16.如图,在$△ABC$中,D,E分别为AB,AC的中点,F为EC的中点,BC,DF的延长线交于点G.求证:
(1)$△DEF\cong △GCF$(
AAS
);
(2)$BC= 2CG$.
证明:(1)$ \because D $,$ E $分别为$ A B $,$ A C $的中点,$ F $为$ E C $的中点,$ \therefore B C = 2 D E $,$ D E // B C $,$ E F = F C $,$ \therefore \angle E D F = \angle G $。在$ \triangle D E F $和$ \triangle G C F $中,$ \left\{ \begin{array} { l } { \angle E D F = \angle G }, \\ { \angle D F E = \angle G F C }, \\ { E F = C F }, \end{array} \right. $ $ \therefore \triangle D E F \cong \triangle G C F $(
AAS
)。
(2)$ \because \triangle D E F \cong \triangle G C F $,$ \therefore D E = C G $。$ \because B C = 2 D E $,$ \therefore B C = 2 C G $。
答案: 证明:
(1)$ \because D $,$ E $分别为$ A B $,$ A C $的中点,$ F $为$ E C $的中点,$ \therefore B C = 2 D E $,$ D E // B C $,$ E F = F C $,$ \therefore \angle E D F = \angle G $。在$ \triangle D E F $和$ \triangle G C F $中,$ \left\{ \begin{array} { l } { \angle E D F = \angle G }, \\ { \angle D F E = \angle G F C }, \\ { E F = C F }, \end{array} \right. $ $ \therefore \triangle D E F \cong \triangle G C F ( A A S ) $。
(2)$ \because \triangle D E F \cong \triangle G C F $,$ \therefore D E = C G $。$ \because B C = 2 D E $,$ \therefore B C = 2 C G $。
17.(黔东南州节选)在四边形ABCD中,对角线AC平分$∠BAD$.
【探究发现】
(1)如图①,若$∠BAD= 120^{\circ },∠ABC= ∠ADC= 90^{\circ }$.求证:$AD+AB= AC;$
【拓展迁移】
(2)如图②,若$∠BAD= 120^{\circ },∠ABC+∠ADC= 180^{\circ }$.
①猜想AB,AD,AC三条线段的数量关系,并说明理由.
猜想:
AB+AD=AC

答案:
(1) 证明:$ \because \angle B A D = 120 ^ { \circ } $,$ A C $平分$ \angle B A D $,$ \therefore \angle C A B = \angle C A D = 60 ^ { \circ } $。$ \because \angle B = \angle D = 90 ^ { \circ } $,$ \therefore A B = A D = \frac { 1 } { 2 } A C $,$ \therefore A D + A B = A C $。
(2) 解:①$ A B + A D = A C $。理由如下:如图,延长$ A D $到点$ E $,使得$ A E = A C $,连接$ C E $。
$ \because \angle B A D = 120 ^ { \circ } $,$ A C $平分$ \angle B A D $,$ \therefore \angle C A E = 60 ^ { \circ } $,$ \therefore \triangle A C E $为等边三角形,$ \therefore \angle E = 60 ^ { \circ } $,$ A C = E C $。$ \because \angle A B C + \angle A D C = 180 ^ { \circ } $,$ \angle A D C + \angle C D E = 180 ^ { \circ } $,$ \therefore \angle A B C = \angle E D C $。$ \because \angle B A C = \angle E = 60 ^ { \circ } $,$ \therefore \triangle A B C \cong \triangle E D C ( A A S ) $,$ \therefore A B = E D $,$ \therefore A B + A D = D E + A D = A E $。$ \because A E = A C $,$ \therefore A B + A D = A C $。
18.(陕西)如图,AB,BC,CD,DE是四根长度均为5 cm的火柴棒,点A,C,E共线.若$AC= 6cm,CD⊥BC$,则线段CE的长度是 (
D
)

A.6 cm
B.7 cm
C.$6\sqrt {2}cm$
D.8 cm
答案: D

查看更多完整答案,请扫码查看

关闭