2025年假期面对面南方出版社八年级数学沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年假期面对面南方出版社八年级数学沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第60页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
9.如图,在$\triangle ABC$中,$AB=BC$,$\angle ABC=120^{\circ}$,$D$是$AC$边上的点,$DA=DB=3$,则$AC$的长为____

9
。
答案:
9
10.如图,已知点$P$是射线$ON$上一动点(即$P$可在射线$ON$上运动),$\angle AON=30^{\circ}$,当$\angle A=$

$30^{\circ}$或$75^{\circ}$或$120^{\circ}$
时,$\triangle AOP$为等腰三角形。
答案:
$30^{\circ}$或$75^{\circ}$或$120^{\circ}$
11.(四川中考)直线上依次有$A$,$B$,$C$,$D$四个点,$AD=7$,$AB=2$。若$AB$,$BC$,$CD$可构成以$BC$为腰的等腰三角形,则$BC$的长为
2或2.5
。
答案:
2或2.5
12.如图,在$\triangle ABC$中,$AB=AC$,$AD$平分$\angle BAC$。
(1)求$\angle ADB$的度数;
(2)若$\angle BAC=100^{\circ}$,求$\angle B$,$\angle C$的度数;
(3)若$BC=3cm$,求$BD$的长。

(1)求$\angle ADB$的度数;
$90^{\circ}$
(2)若$\angle BAC=100^{\circ}$,求$\angle B$,$\angle C$的度数;
$40^{\circ}$
,$40^{\circ}$
(3)若$BC=3cm$,求$BD$的长。
$1.5cm$
答案:
解:
(1) $\because AB = AC$,$AD$平分$\angle BAC$,$\therefore AD\perp BC$,$\therefore \angle ADB = 90^{\circ}$。
(2) $\because \angle BAC = 100^{\circ}$,$\therefore \angle B+\angle C = 80^{\circ}$。$\because AB = AC$,$\therefore \angle C=\angle B = 40^{\circ}$。
(3) $\because AB = AC$,$AD$平分$\angle BAC$,$\therefore BD=\frac{1}{2}BC=\frac{1}{2}\times3 = 1.5(\text{cm})$。
(1) $\because AB = AC$,$AD$平分$\angle BAC$,$\therefore AD\perp BC$,$\therefore \angle ADB = 90^{\circ}$。
(2) $\because \angle BAC = 100^{\circ}$,$\therefore \angle B+\angle C = 80^{\circ}$。$\because AB = AC$,$\therefore \angle C=\angle B = 40^{\circ}$。
(3) $\because AB = AC$,$AD$平分$\angle BAC$,$\therefore BD=\frac{1}{2}BC=\frac{1}{2}\times3 = 1.5(\text{cm})$。
13.如图,已知$\triangle ABC$和$\triangle DBE$均为等腰直角三角形。
(1)求证:$AD=CE$;
(2)猜想:$AD$和$CE$是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由。

(1)求证:$AD=CE$;
(2)猜想:$AD$和$CE$是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由。
答案:
(1) 证明: $\because \triangle ABC$和$\triangle DBE$均为等腰直角三角形,$\therefore AB = BC$,$BD = BE$,$\angle ABC=\angle DBE = 90^{\circ}$,$\therefore \angle ABC-\angle DBC=\angle DBE-\angle DBC$,即$\angle ABD=\angle CBE$,$\therefore \triangle ABD\cong\triangle CBE$,$\therefore AD = CE$。
(2) 解: 垂直. 理由如下: 如图,延长$AD$分别交$BC$和$CE$于点$G$和点$F$。$\because \triangle ABD\cong\triangle CBE$,$\therefore \angle BAD=\angle BCE$。$\because \angle BAD+\angle ABC+\angle BGA=\angle BCE+\angle AFC+\angle CGF = 180^{\circ}$,又$\because \angle BGA=\angle CGF$,$\therefore \angle AFC=\angle ABC = 90^{\circ}$,$\therefore AD\perp CE$。
(1) 证明: $\because \triangle ABC$和$\triangle DBE$均为等腰直角三角形,$\therefore AB = BC$,$BD = BE$,$\angle ABC=\angle DBE = 90^{\circ}$,$\therefore \angle ABC-\angle DBC=\angle DBE-\angle DBC$,即$\angle ABD=\angle CBE$,$\therefore \triangle ABD\cong\triangle CBE$,$\therefore AD = CE$。
(2) 解: 垂直. 理由如下: 如图,延长$AD$分别交$BC$和$CE$于点$G$和点$F$。$\because \triangle ABD\cong\triangle CBE$,$\therefore \angle BAD=\angle BCE$。$\because \angle BAD+\angle ABC+\angle BGA=\angle BCE+\angle AFC+\angle CGF = 180^{\circ}$,又$\because \angle BGA=\angle CGF$,$\therefore \angle AFC=\angle ABC = 90^{\circ}$,$\therefore AD\perp CE$。
14.如图,点$O$是等边$\triangle ABC$内一点,$\angle AOB=110^{\circ}$,$\angle BOC=\alpha$。以$OC$为一边作等边三角形$OCD$,连接$AD$。
(1)当$\alpha=150^{\circ}$时,试判断$\triangle AOD$的形状,并说明理由;
(2)当$\alpha$为多少度时,$\triangle AOD$是等腰三角形?
(1)$\triangle AOD$是
(2) 由(1)得,$\angle ADO=\alpha - 60^{\circ}$,结合题图易知$\angle AOD = 360^{\circ}-110^{\circ}-60^{\circ}-\alpha = 190^{\circ}-\alpha$,$\therefore \angle OAD = 180^{\circ}-(\alpha - 60^{\circ})-(190^{\circ}-\alpha)=50^{\circ}$。①要使$AO = AD$,需$\angle AOD=\angle ADO$,$\therefore 190^{\circ}-\alpha=\alpha - 60^{\circ}$,$\therefore \alpha = 125^{\circ}$。②要使$OA = OD$,需$\angle OAD=\angle ADO$,$\therefore \alpha - 60^{\circ}=50^{\circ}$,$\therefore \alpha = 110^{\circ}$。③要使$OD = AD$,需$\angle OAD=\angle AOD$,$\therefore 190^{\circ}-\alpha = 50^{\circ}$,$\therefore \alpha = 140^{\circ}$。综上,当$\alpha$为
(1)当$\alpha=150^{\circ}$时,试判断$\triangle AOD$的形状,并说明理由;
(2)当$\alpha$为多少度时,$\triangle AOD$是等腰三角形?
(1)$\triangle AOD$是
直角三角形
. 理由如下: $\because \triangle OCD$是等边三角形,$\therefore OC = CD$,$\angle OCD=\angle ODC = 60^{\circ}$。又$\because \triangle ABC$是等边三角形,$\therefore BC = AC$,$\angle ACB = 60^{\circ}$。$\because \angle ACB=\angle OCD = 60^{\circ}$,$\therefore \angle BCO=\angle ACD$。在$\triangle BOC$和$\triangle ADC$中,$\because \begin{cases}OC = DC,\\\angle BCO=\angle ACD,\\BC = AC,\end{cases}$ $\therefore \triangle BOC\cong\triangle ADC(SAS)$。$\therefore \angle BOC=\angle ADC = 150^{\circ}$,$\therefore \angle ADO = 150^{\circ}-60^{\circ}=90^{\circ}$。$\therefore \triangle AOD$是直角三角形. (2) 由(1)得,$\angle ADO=\alpha - 60^{\circ}$,结合题图易知$\angle AOD = 360^{\circ}-110^{\circ}-60^{\circ}-\alpha = 190^{\circ}-\alpha$,$\therefore \angle OAD = 180^{\circ}-(\alpha - 60^{\circ})-(190^{\circ}-\alpha)=50^{\circ}$。①要使$AO = AD$,需$\angle AOD=\angle ADO$,$\therefore 190^{\circ}-\alpha=\alpha - 60^{\circ}$,$\therefore \alpha = 125^{\circ}$。②要使$OA = OD$,需$\angle OAD=\angle ADO$,$\therefore \alpha - 60^{\circ}=50^{\circ}$,$\therefore \alpha = 110^{\circ}$。③要使$OD = AD$,需$\angle OAD=\angle AOD$,$\therefore 190^{\circ}-\alpha = 50^{\circ}$,$\therefore \alpha = 140^{\circ}$。综上,当$\alpha$为
$110^{\circ}$或$125^{\circ}$或$140^{\circ}$
时,$\triangle AOD$是等腰三角形.
答案:
解:
(1) $\triangle AOD$是直角三角形. 理由如下: $\because \triangle OCD$是等边三角形,$\therefore OC = CD$,$\angle OCD=\angle ODC = 60^{\circ}$。又$\because \triangle ABC$是等边三角形,$\therefore BC = AC$,$\angle ACB = 60^{\circ}$。$\because \angle ACB=\angle OCD = 60^{\circ}$,$\therefore \angle BCO=\angle ACD$。在$\triangle BOC$和$\triangle ADC$中,$\because \begin{cases}OC = DC,\\\angle BCO=\angle ACD,\\BC = AC,\end{cases}$ $\therefore \triangle BOC\cong\triangle ADC(SAS)$。$\therefore \angle BOC=\angle ADC = 150^{\circ}$,$\therefore \angle ADO = 150^{\circ}-60^{\circ}=90^{\circ}$。$\therefore \triangle AOD$是直角三角形.
(2) 由
(1)得,$\angle ADO=\alpha - 60^{\circ}$,结合题图易知$\angle AOD = 360^{\circ}-110^{\circ}-60^{\circ}-\alpha = 190^{\circ}-\alpha$,$\therefore \angle OAD = 180^{\circ}-(\alpha - 60^{\circ})-(190^{\circ}-\alpha)=50^{\circ}$。①要使$AO = AD$,需$\angle AOD=\angle ADO$,$\therefore 190^{\circ}-\alpha=\alpha - 60^{\circ}$,$\therefore \alpha = 125^{\circ}$。②要使$OA = OD$,需$\angle OAD=\angle ADO$,$\therefore \alpha - 60^{\circ}=50^{\circ}$,$\therefore \alpha = 110^{\circ}$。③要使$OD = AD$,需$\angle OAD=\angle AOD$,$\therefore 190^{\circ}-\alpha = 50^{\circ}$,$\therefore \alpha = 140^{\circ}$。综上,当$\alpha$为$110^{\circ}$或$125^{\circ}$或$140^{\circ}$时,$\triangle AOD$是等腰三角形.
(1) $\triangle AOD$是直角三角形. 理由如下: $\because \triangle OCD$是等边三角形,$\therefore OC = CD$,$\angle OCD=\angle ODC = 60^{\circ}$。又$\because \triangle ABC$是等边三角形,$\therefore BC = AC$,$\angle ACB = 60^{\circ}$。$\because \angle ACB=\angle OCD = 60^{\circ}$,$\therefore \angle BCO=\angle ACD$。在$\triangle BOC$和$\triangle ADC$中,$\because \begin{cases}OC = DC,\\\angle BCO=\angle ACD,\\BC = AC,\end{cases}$ $\therefore \triangle BOC\cong\triangle ADC(SAS)$。$\therefore \angle BOC=\angle ADC = 150^{\circ}$,$\therefore \angle ADO = 150^{\circ}-60^{\circ}=90^{\circ}$。$\therefore \triangle AOD$是直角三角形.
(2) 由
(1)得,$\angle ADO=\alpha - 60^{\circ}$,结合题图易知$\angle AOD = 360^{\circ}-110^{\circ}-60^{\circ}-\alpha = 190^{\circ}-\alpha$,$\therefore \angle OAD = 180^{\circ}-(\alpha - 60^{\circ})-(190^{\circ}-\alpha)=50^{\circ}$。①要使$AO = AD$,需$\angle AOD=\angle ADO$,$\therefore 190^{\circ}-\alpha=\alpha - 60^{\circ}$,$\therefore \alpha = 125^{\circ}$。②要使$OA = OD$,需$\angle OAD=\angle ADO$,$\therefore \alpha - 60^{\circ}=50^{\circ}$,$\therefore \alpha = 110^{\circ}$。③要使$OD = AD$,需$\angle OAD=\angle AOD$,$\therefore 190^{\circ}-\alpha = 50^{\circ}$,$\therefore \alpha = 140^{\circ}$。综上,当$\alpha$为$110^{\circ}$或$125^{\circ}$或$140^{\circ}$时,$\triangle AOD$是等腰三角形.
查看更多完整答案,请扫码查看