2025年假期面对面南方出版社八年级数学沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年假期面对面南方出版社八年级数学沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第42页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
13.(泰州中考)如图所示的网格由边长相同的小正方形组成,点A,B,C,D,E,F,G在小正方形的顶点上,则$\triangle ABC$的重心是 (

A. 点D
B. 点E
C. 点F
D. 点G
A
)A. 点D
B. 点E
C. 点F
D. 点G
答案:
A
14.(成都中考)等腰三角形的一个底角为$50^{\circ}$,则它的顶角的度数为
$80^{\circ}$
.
答案:
$80^{\circ}$
15.(齐齐哈尔中考)等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是
10 或 11
.
答案:
10 或 11
16.(安徽中考)命题“如果$a + b = 0$,那么a,b互为相反数”的逆命题为
如果 $a$,$b$ 互为相反数,那么 $a + b = 0$
.
答案:
如果 $a$,$b$ 互为相反数,那么 $a + b = 0$
17.(成都中考)在$\triangle ABC$中,$\angle A:\angle B:\angle C = 2:3:4$,则$\angle A$的度数为______
$40^{\circ}$
.
答案:
$40^{\circ}$
18.(陕西中考)如图,在$\triangle ABC$中,BD和CE是$\triangle ABC$的两条角平分线.若$\angle A = 52^{\circ}$,则$\angle 1 + \angle 2$的度数为

$64^{\circ}$
.
答案:
$64^{\circ}$
19.(泰州中考)如图,将分别含有$30^{\circ}$,$45^{\circ}$角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为$65^{\circ}$,则图中角$\alpha$的度数为______

$140^{\circ}$
.
答案:
$140^{\circ}$
20.(6分)(淄博中考)已知:如图,$\triangle ABC$是任意一个三角形,求证:$\angle A + \angle B + \angle C = 180^{\circ}$.

答案:
证明:如图,过点 $A$ 作 $EF // BC$。$\because EF // BC$,
$\therefore \angle 1 = \angle B$,$\angle 2 = \angle C$。$\because \angle 1 + \angle 2 + \angle BAC = 180^{\circ}$,$\therefore \angle BAC + \angle B + \angle C = 180^{\circ}$,即 $\angle A + \angle B + \angle C = 180^{\circ}$。
证明:如图,过点 $A$ 作 $EF // BC$。$\because EF // BC$,
21.(8分)(宜昌中考)如图,在$Rt\triangle ABC$中,$\angle ACB = 90^{\circ}$,$\angle A = 40^{\circ}$,$\triangle ABC$的外角$\angle CBD$的平分线BE交AC的延长线于点E.
(1)求$\angle CBE$的度数;
(2)过点D作$DF// BE$,交AC的延长线于点F,求$\angle F$的度数.

(1)求$\angle CBE$的度数;
65°
(2)过点D作$DF// BE$,交AC的延长线于点F,求$\angle F$的度数.
25°
答案:
解:
(1) $\because \angle ACB = 90^{\circ}$,$\angle A = 40^{\circ}$,$\therefore \angle ABC = 90^{\circ} - \angle A = 50^{\circ}$,$\therefore \angle CBD = 130^{\circ}$。$\because BE$ 是 $\angle CBD$ 的平分线,$\therefore \angle CBE = \frac{1}{2} \angle CBD = 65^{\circ}$。
(2) $\because \angle ACB = 90^{\circ}$,$\angle CBE = 65^{\circ}$,$\therefore \angle CEB = 90^{\circ} - 65^{\circ} = 25^{\circ}$。$\because DF // BE$,$\therefore \angle F = \angle CEB = 25^{\circ}$。
(1) $\because \angle ACB = 90^{\circ}$,$\angle A = 40^{\circ}$,$\therefore \angle ABC = 90^{\circ} - \angle A = 50^{\circ}$,$\therefore \angle CBD = 130^{\circ}$。$\because BE$ 是 $\angle CBD$ 的平分线,$\therefore \angle CBE = \frac{1}{2} \angle CBD = 65^{\circ}$。
(2) $\because \angle ACB = 90^{\circ}$,$\angle CBE = 65^{\circ}$,$\therefore \angle CEB = 90^{\circ} - 65^{\circ} = 25^{\circ}$。$\because DF // BE$,$\therefore \angle F = \angle CEB = 25^{\circ}$。
22.(10分)(绍兴中考)问题:如图,在$\triangle ABD$中,$BA = BD$.在BD的延长线上取点E,C,作$\triangle AEC$,使$EA = EC$.若$\angle BAE = 90^{\circ}$,$\angle B = 45^{\circ}$,求$\angle DAC$的度数.
答案:$\angle DAC = $
思考:(1)如果把以上“问题”中的条件“$\angle B = 45^{\circ}$”去掉,其余条件不变,那么$\angle DAC$的度数会改变吗? 说明理由;
(2)如果把以上“问题”中的条件“$\angle B = 45^{\circ}$”去掉,再将“$\angle BAE = 90^{\circ}$”改为“$\angle BAE = n^{\circ}$”,其余条件不变,求$\angle DAC$的度数.

答案:$\angle DAC = $
$45^{\circ}$
.思考:(1)如果把以上“问题”中的条件“$\angle B = 45^{\circ}$”去掉,其余条件不变,那么$\angle DAC$的度数会改变吗? 说明理由;
(2)如果把以上“问题”中的条件“$\angle B = 45^{\circ}$”去掉,再将“$\angle BAE = 90^{\circ}$”改为“$\angle BAE = n^{\circ}$”,其余条件不变,求$\angle DAC$的度数.
答案:
解:
(1) $\angle DAC$ 的度数不会改变。$\because EA = EC$,$\therefore \angle AED = 2 \angle C$。$\because \angle BAE = 90^{\circ}$,$\therefore \angle BAD = \frac{1}{2}[180^{\circ} - (90^{\circ} - 2 \angle C)] = 45^{\circ} + \angle C$,$\therefore \angle DAE = 90^{\circ} - \angle BAD = 90^{\circ} - (45^{\circ} + \angle C) = 45^{\circ} - \angle C$,$\therefore \angle DAC = \angle DAE + \angle CAE = 45^{\circ}$。
(2) 设 $\angle ABC = m^{\circ}$,则 $\angle BAD = \frac{1}{2}(180^{\circ} - m^{\circ}) = 90^{\circ} - \frac{1}{2}m^{\circ}$,$\angle AEB = 180^{\circ} - n^{\circ} - m^{\circ}$,$\therefore \angle DAE = n^{\circ} - \angle BAD = n^{\circ} - 90^{\circ} + \frac{1}{2}m^{\circ}$。$\because EA = EC$,$\therefore \angle CAE = \frac{1}{2} \angle AEB = 90^{\circ} - \frac{1}{2}n^{\circ} - \frac{1}{2}m^{\circ}$,$\therefore \angle DAC = \angle DAE + \angle CAE = n^{\circ} - 90^{\circ} + \frac{1}{2}m^{\circ} + 90^{\circ} - \frac{1}{2}n^{\circ} - \frac{1}{2}m^{\circ} = \frac{1}{2}n^{\circ}$。
(1) $\angle DAC$ 的度数不会改变。$\because EA = EC$,$\therefore \angle AED = 2 \angle C$。$\because \angle BAE = 90^{\circ}$,$\therefore \angle BAD = \frac{1}{2}[180^{\circ} - (90^{\circ} - 2 \angle C)] = 45^{\circ} + \angle C$,$\therefore \angle DAE = 90^{\circ} - \angle BAD = 90^{\circ} - (45^{\circ} + \angle C) = 45^{\circ} - \angle C$,$\therefore \angle DAC = \angle DAE + \angle CAE = 45^{\circ}$。
(2) 设 $\angle ABC = m^{\circ}$,则 $\angle BAD = \frac{1}{2}(180^{\circ} - m^{\circ}) = 90^{\circ} - \frac{1}{2}m^{\circ}$,$\angle AEB = 180^{\circ} - n^{\circ} - m^{\circ}$,$\therefore \angle DAE = n^{\circ} - \angle BAD = n^{\circ} - 90^{\circ} + \frac{1}{2}m^{\circ}$。$\because EA = EC$,$\therefore \angle CAE = \frac{1}{2} \angle AEB = 90^{\circ} - \frac{1}{2}n^{\circ} - \frac{1}{2}m^{\circ}$,$\therefore \angle DAC = \angle DAE + \angle CAE = n^{\circ} - 90^{\circ} + \frac{1}{2}m^{\circ} + 90^{\circ} - \frac{1}{2}n^{\circ} - \frac{1}{2}m^{\circ} = \frac{1}{2}n^{\circ}$。
查看更多完整答案,请扫码查看