2025年假期面对面南方出版社八年级数学沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年假期面对面南方出版社八年级数学沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第46页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
12.(黑龙江中考)如图,$Rt\triangle ABC$和$Rt\triangle EDF$中,$∠B=∠D$,在不添加任何辅助线的情况下,请你添加一个条件______

$ AB = ED $(答案不唯一)
,使$Rt\triangle ABC$和$Rt\triangle EDF$全等.
答案:
$ AB = ED $(答案不唯一)
13.(成都中考)如图,在$\triangle ABC$中,$AB=AC$,点D,E都在边BC上,$∠BAD=∠CAE$,若$BD=9$,则CE的长为______

9
.
答案:
9
14.(8分)(铜仁中考)如图,$∠B=∠E,BF=EC,AC// DF$.求证:$\triangle ABC\cong \triangle DEF$.
证明:$\because AC // DF$,$\therefore ∠ACB = ∠DFE$。$\because BF = EC$,$\therefore BC = EF$。在$\triangle ABC$和$\triangle DEF$中,$\because \left\{ \begin{array} { l } { ∠B = ∠E, } \\ { BC = EF, } \\ { ∠ACB = ∠DFE, } \end{array} \right.$ $\therefore \triangle ABC \cong \triangle DEF (
证明:$\because AC // DF$,$\therefore ∠ACB = ∠DFE$。$\because BF = EC$,$\therefore BC = EF$。在$\triangle ABC$和$\triangle DEF$中,$\because \left\{ \begin{array} { l } { ∠B = ∠E, } \\ { BC = EF, } \\ { ∠ACB = ∠DFE, } \end{array} \right.$ $\therefore \triangle ABC \cong \triangle DEF (
ASA
)$。
答案:
证明:$\because AC // DF$,$\therefore \angle ACB = \angle DFE$。$\because BF = EC$,$\therefore BC = EF$。在$\triangle ABC$和$\triangle DEF$中,$\because \left\{ \begin{array} { l } { B = E, } \\ { B C = E F, } \\ { \angle A C B = \angle D F E, } \end{array} \right.$ $\therefore \triangle ABC \cong \triangle DEF ( \text { ASA } )$。
15.(8分)(南充中考)如图,点C在线段BD上,且$AB⊥BD,DE⊥BD,AC⊥CE,BC=DE$.求证:$AB=CD$.
证明:$\because AB \perp BD$,$ED \perp BD$,$AC \perp CE$,$\therefore \angle ACE = \angle ABC = \angle CDE = 90 ^ { \circ }$。$\therefore \angle ACB + \angle ECD = 90 ^ { \circ }$,$\angle ECD + \angle CED = 90 ^ { \circ }$,$\therefore \angle ACB = \angle CED$。在$\triangle ABC$和$\triangle CDE$中,$\because \left\{ \begin{array} { l } { \angle A C B = \angle C E D, } \\ { B C = D E, } \\ { \angle A B C = \angle C D E, } \end{array} \right.$ $\therefore \triangle ABC \cong \triangle CDE ( \text {
证明:$\because AB \perp BD$,$ED \perp BD$,$AC \perp CE$,$\therefore \angle ACE = \angle ABC = \angle CDE = 90 ^ { \circ }$。$\therefore \angle ACB + \angle ECD = 90 ^ { \circ }$,$\angle ECD + \angle CED = 90 ^ { \circ }$,$\therefore \angle ACB = \angle CED$。在$\triangle ABC$和$\triangle CDE$中,$\because \left\{ \begin{array} { l } { \angle A C B = \angle C E D, } \\ { B C = D E, } \\ { \angle A B C = \angle C D E, } \end{array} \right.$ $\therefore \triangle ABC \cong \triangle CDE ( \text {
ASA
} )$。$\therefore AB = CD$。
答案:
证明:$\because AB \perp BD$,$ED \perp BD$,$AC \perp CE$,$\therefore \angle ACE = \angle ABC = \angle CDE = 90 ^ { \circ }$。$\therefore \angle ACB + \angle ECD = 90 ^ { \circ }$,$\angle ECD + \angle CED = 90 ^ { \circ }$,$\therefore \angle ACB = \angle CED$。在$\triangle ABC$和$\triangle CDE$中,$\because \left\{ \begin{array} { l } { \angle A C B = \angle C E D, } \\ { B C = D E, } \\ { \angle A B C = \angle C D E, } \end{array} \right.$ $\therefore \triangle ABC \cong \triangle CDE ( \text { ASA } )$。$\therefore AB = CD$。
16.(16分)(常州中考)已知:如图,点A,B,C,D在一条直线上,$EA// FB,EA=FB,AB=CD$.
(1)求证:$∠E=∠F$;
证明:$\because EA // FB$,$\therefore \angle A = \angle FBD$。$\because AB = CD$,$\therefore AB + BC = CD + BC$,即$AC = BD$。在$\triangle EAC$和$\triangle FBD$中,$\because \left\{ \begin{array} { l } { E A = F B, } \\ { \angle A = \angle F B D, } \\ { A C = B D, } \end{array} \right.$ $\therefore \triangle EAC \cong \triangle FBD ( \text { SAS } )$。$\therefore \angle E = \angle F$。
(2)若$∠A=40^{\circ },∠D=80^{\circ }$,求$∠E$的度数.
解:$\because \triangle EAC \cong \triangle FBD$,$\therefore \angle ECA = \angle D = 80 ^ { \circ }$。$\because \angle A = 40 ^ { \circ }$,$\therefore \angle E = 180 ^ { \circ } - 40 ^ { \circ } - 80 ^ { \circ } = 60 ^ { \circ }$。
故$∠E$的度数为
(1)求证:$∠E=∠F$;
证明:$\because EA // FB$,$\therefore \angle A = \angle FBD$。$\because AB = CD$,$\therefore AB + BC = CD + BC$,即$AC = BD$。在$\triangle EAC$和$\triangle FBD$中,$\because \left\{ \begin{array} { l } { E A = F B, } \\ { \angle A = \angle F B D, } \\ { A C = B D, } \end{array} \right.$ $\therefore \triangle EAC \cong \triangle FBD ( \text { SAS } )$。$\therefore \angle E = \angle F$。
(2)若$∠A=40^{\circ },∠D=80^{\circ }$,求$∠E$的度数.
解:$\because \triangle EAC \cong \triangle FBD$,$\therefore \angle ECA = \angle D = 80 ^ { \circ }$。$\because \angle A = 40 ^ { \circ }$,$\therefore \angle E = 180 ^ { \circ } - 40 ^ { \circ } - 80 ^ { \circ } = 60 ^ { \circ }$。
故$∠E$的度数为
60°
。
答案:
(1) 证明:$\because EA // FB$,$\therefore \angle A = \angle FBD$。$\because AB = CD$,$\therefore AB + BC = CD + BC$,即$AC = BD$。在$\triangle EAC$和$\triangle FBD$中,$\because \left\{ \begin{array} { l } { E A = F B, } \\ { \angle A = \angle F B D, } \\ { A C = B D, } \end{array} \right.$ $\therefore \triangle EAC \cong \triangle FBD ( \text { SAS } )$。$\therefore \angle E = \angle F$。
(2) 解:$\because \triangle EAC \cong \triangle FBD$,$\therefore \angle ECA = \angle D = 80 ^ { \circ }$。$\because \angle A = 40 ^ { \circ }$,$\therefore \angle E = 180 ^ { \circ } - 40 ^ { \circ } - 80 ^ { \circ } = 60 ^ { \circ }$。
(1) 证明:$\because EA // FB$,$\therefore \angle A = \angle FBD$。$\because AB = CD$,$\therefore AB + BC = CD + BC$,即$AC = BD$。在$\triangle EAC$和$\triangle FBD$中,$\because \left\{ \begin{array} { l } { E A = F B, } \\ { \angle A = \angle F B D, } \\ { A C = B D, } \end{array} \right.$ $\therefore \triangle EAC \cong \triangle FBD ( \text { SAS } )$。$\therefore \angle E = \angle F$。
(2) 解:$\because \triangle EAC \cong \triangle FBD$,$\therefore \angle ECA = \angle D = 80 ^ { \circ }$。$\because \angle A = 40 ^ { \circ }$,$\therefore \angle E = 180 ^ { \circ } - 40 ^ { \circ } - 80 ^ { \circ } = 60 ^ { \circ }$。
17.(16分)(宜宾中考)如图,在$\triangle ABC$中,点D是边BC的中点,连接AD并延长到点E,使$DE=AD$,连接CE.
(1)求证:$\triangle ABD\cong \triangle ECD$;
证明:$\because D$是$BC$的中点,$\therefore BD = CD$。在$\triangle ABD$和$\triangle ECD$中,$\because \left\{ \begin{array} { l } { B D = C D, } \\ { \angle A D B = \angle E D C, } \\ { A D = E D, } \end{array} \right.$ $\therefore \triangle ABD \cong \triangle ECD ( \text {
(2)若$\triangle ABD$的面积为5,求$\triangle ACE$的面积.
解:在$\triangle ABC$中,$\because D$是边$BC$的中点,$\therefore S _ { \triangle ABD } = S _ { \triangle ACD }$。$\because \triangle ABD \cong \triangle ECD$,$\therefore S _ { \triangle ABD } = S _ { \triangle ECD }$。$\because S _ { \triangle ABD } = 5$,$\therefore S _ { \triangle ACE } = S _ { \triangle ACD } + S _ { \triangle ECD } = 5 + 5 =

(1)求证:$\triangle ABD\cong \triangle ECD$;
证明:$\because D$是$BC$的中点,$\therefore BD = CD$。在$\triangle ABD$和$\triangle ECD$中,$\because \left\{ \begin{array} { l } { B D = C D, } \\ { \angle A D B = \angle E D C, } \\ { A D = E D, } \end{array} \right.$ $\therefore \triangle ABD \cong \triangle ECD ( \text {
SAS
} )$。(2)若$\triangle ABD$的面积为5,求$\triangle ACE$的面积.
解:在$\triangle ABC$中,$\because D$是边$BC$的中点,$\therefore S _ { \triangle ABD } = S _ { \triangle ACD }$。$\because \triangle ABD \cong \triangle ECD$,$\therefore S _ { \triangle ABD } = S _ { \triangle ECD }$。$\because S _ { \triangle ABD } = 5$,$\therefore S _ { \triangle ACE } = S _ { \triangle ACD } + S _ { \triangle ECD } = 5 + 5 =
10
$。
答案:
(1) 证明:$\because D$是$BC$的中点,$\therefore BD = CD$。在$\triangle ABD$和$\triangle ECD$中,$\because \left\{ \begin{array} { l } { B D = C D, } \\ { \angle A D B = \angle E D C, } \\ { A D = E D, } \end{array} \right.$ $\therefore \triangle ABD \cong \triangle ECD ( \text { SAS } )$。
(2) 解:在$\triangle ABC$中,$\because D$是边$BC$的中点,$\therefore S _ { \triangle ABD } = S _ { \triangle ACD }$。$\because \triangle ABD \cong \triangle ECD$,$\therefore S _ { \triangle ABD } = S _ { \triangle ECD }$。$\because S _ { \triangle ABD } = 5$,$\therefore S _ { \triangle ACE } = S _ { \triangle ACD } + S _ { \triangle ECD } = 5 + 5 = 10$。
(1) 证明:$\because D$是$BC$的中点,$\therefore BD = CD$。在$\triangle ABD$和$\triangle ECD$中,$\because \left\{ \begin{array} { l } { B D = C D, } \\ { \angle A D B = \angle E D C, } \\ { A D = E D, } \end{array} \right.$ $\therefore \triangle ABD \cong \triangle ECD ( \text { SAS } )$。
(2) 解:在$\triangle ABC$中,$\because D$是边$BC$的中点,$\therefore S _ { \triangle ABD } = S _ { \triangle ACD }$。$\because \triangle ABD \cong \triangle ECD$,$\therefore S _ { \triangle ABD } = S _ { \triangle ECD }$。$\because S _ { \triangle ABD } = 5$,$\therefore S _ { \triangle ACE } = S _ { \triangle ACD } + S _ { \triangle ECD } = 5 + 5 = 10$。
查看更多完整答案,请扫码查看