21. (本小题8分)已知:如图,$AB = AC$,$D$是$AB$上一点,$DE\perp BC$于点$E$,$ED$的延长线交$CA$的延长线于点$F$.求证:$\triangle ADF$是等腰三角形.

答案:
证明:
∵AB = AC,
∴∠B = ∠C.
∵FD⊥BC于点E,
∴∠FEB = ∠FEC = 90°.
∴∠B + ∠EDB = ∠C + ∠EFC = 90°,
∴∠EFC = ∠EDB.
∵∠EDB = ∠ADF,
∴∠EFC = ∠ADF,
∴△ADF是等腰三角形.
∵AB = AC,
∴∠B = ∠C.
∵FD⊥BC于点E,
∴∠FEB = ∠FEC = 90°.
∴∠B + ∠EDB = ∠C + ∠EFC = 90°,
∴∠EFC = ∠EDB.
∵∠EDB = ∠ADF,
∴∠EFC = ∠ADF,
∴△ADF是等腰三角形.
22. (本小题12分)如图,$\triangle ABC$是边长为3cm的等边三角形,动点$P$,$Q$同时从$A$,$B$两点出发,分别沿$AB$,$BC$的方向匀速移动,它们的速度都是1cm/s,当点$P$到达点$B$时,$P$,$Q$两点停止运动.设点$P$的运动时间为$t\ s$,则当$t$为何值时,$\triangle PBQ$是直角三角形?

答案:
解:根据题意,得AP = t cm,BQ = t cm.
在△ABC中,AB = BC = 3 cm,∠B = 60°,
∴BP = (3 - t)cm.
在△PBQ中,BP = (3 - t)cm,BQ = t cm,
若△PBQ是直角三角形,
则∠BQP = 90°或∠BPQ = 90°.
当∠BQP = 90°时,∠BPQ = 90° - ∠B = 30°,
∴BQ = $\frac{1}{2}$BP,即t = $\frac{1}{2}$(3 - t),解得t = 1.
当∠BPQ = 90°时,∠BQP = 90° - ∠B = 30°,
∴BP = $\frac{1}{2}$BQ,即3 - t = $\frac{1}{2}$t,解得t = 2.
即当t为1或2时,△PBQ是直角三角形.
在△ABC中,AB = BC = 3 cm,∠B = 60°,
∴BP = (3 - t)cm.
在△PBQ中,BP = (3 - t)cm,BQ = t cm,
若△PBQ是直角三角形,
则∠BQP = 90°或∠BPQ = 90°.
当∠BQP = 90°时,∠BPQ = 90° - ∠B = 30°,
∴BQ = $\frac{1}{2}$BP,即t = $\frac{1}{2}$(3 - t),解得t = 1.
当∠BPQ = 90°时,∠BQP = 90° - ∠B = 30°,
∴BP = $\frac{1}{2}$BQ,即3 - t = $\frac{1}{2}$t,解得t = 2.
即当t为1或2时,△PBQ是直角三角形.
23. (本小题12分)如图,等边$\triangle ABC$中,$AO$是$\angle BAC$的角平分线,$D$为$AO$上一点,以$CD$为一边且在$CD$下方作等边$\triangle CDE$,连接$BE$.
(1)求证:$\triangle ACD\cong\triangle BCE$;
(2)延长$BE$至$Q$,$P$为$BQ$上一点,连接$CP$、$CQ$使$CP = CQ = 5$,若$BC = 8$时,求$PQ$的长.

(1)求证:$\triangle ACD\cong\triangle BCE$;
(2)延长$BE$至$Q$,$P$为$BQ$上一点,连接$CP$、$CQ$使$CP = CQ = 5$,若$BC = 8$时,求$PQ$的长.
答案:
(1) 证明:
∵△ABC与△DCE是等边三角形,
∴AC = BC,DC = EC,∠ACB = ∠DCE = 60°,
∴∠ACD + ∠DCB = ∠ECB + ∠DCB = 60°,
∴∠ACD = ∠BCE,
∴△ACD≌△BCE(SAS);

(2) 解:过点C作CH⊥BQ于H,
∵△ABC是等边三角形,AO是角平分线,
∴∠DAC = 30°,
∵△ACD≌△BCE,
∴∠PBC = ∠DAC = 30°,
∴在Rt△BHC中,CH = $\frac{1}{2}$BC = $\frac{1}{2}$×8 = 4,
∵PC = CQ = 5,CH = 4,
∴PH = QH = 3,
∴PQ = 6.
(1) 证明:
∵△ABC与△DCE是等边三角形,
∴AC = BC,DC = EC,∠ACB = ∠DCE = 60°,
∴∠ACD + ∠DCB = ∠ECB + ∠DCB = 60°,
∴∠ACD = ∠BCE,
∴△ACD≌△BCE(SAS);
(2) 解:过点C作CH⊥BQ于H,
∵△ABC是等边三角形,AO是角平分线,
∴∠DAC = 30°,
∵△ACD≌△BCE,
∴∠PBC = ∠DAC = 30°,
∴在Rt△BHC中,CH = $\frac{1}{2}$BC = $\frac{1}{2}$×8 = 4,
∵PC = CQ = 5,CH = 4,
∴PH = QH = 3,
∴PQ = 6.
查看更多完整答案,请扫码查看