21. (本小题12分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠. 书包每个定价20元,水性笔每支定价5元. 小丽和同学需买4个书包和水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用$y$(元)与所买水性笔支数$x$(支)之间的函数关系式;
(2)通过对$x$的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
(1)分别写出两种优惠方法购买费用$y$(元)与所买水性笔支数$x$(支)之间的函数关系式;
(2)通过对$x$的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
答案:
解:
(1) 设按优惠方法①购买需用$y_{1}$元,按优惠方法②购买需用$y_{2}$元,则$y_{1}=(x - 4)\times5 + 20\times4 = 5x + 60$,$y_{2}=(5x + 20\times4)\times0.9 = 4.5x + 72$.
(2) 设$y_{1}>y_{2}$,即$5x + 60>4.5x + 72$,解得$x>24$. 当$x>24$时,选择优惠方法②;设$y_{1}=y_{2}$,$\therefore$当$x = 24$时,选择优惠方法①,②均可. $\therefore$当$4\leqslant x<24$时,选择优惠方法①.
(3)$\because$需要购买 4 个书包和 12 支水性笔,而$12<24$,
购买方案一:用优惠方法①购买,需$5x + 60 = 5\times12 + 60 = 120$(元);购买方案二:采用两种购买方式,用优惠方法①购买 4 个书包,需要$4\times20 = 80$(元),同时获赠 4 支水性笔;用优惠方法②购买 8 支水性笔,需要$8\times5\times90\% = 36$(元). 共需$80 + 36 = 116$(元).
显然$116<120$. $\therefore$最佳购买方案是:用优惠方法①购买 4 个书包,获赠 4 支水性笔;再用优惠方法②购买 8 支水性笔.
(1) 设按优惠方法①购买需用$y_{1}$元,按优惠方法②购买需用$y_{2}$元,则$y_{1}=(x - 4)\times5 + 20\times4 = 5x + 60$,$y_{2}=(5x + 20\times4)\times0.9 = 4.5x + 72$.
(2) 设$y_{1}>y_{2}$,即$5x + 60>4.5x + 72$,解得$x>24$. 当$x>24$时,选择优惠方法②;设$y_{1}=y_{2}$,$\therefore$当$x = 24$时,选择优惠方法①,②均可. $\therefore$当$4\leqslant x<24$时,选择优惠方法①.
(3)$\because$需要购买 4 个书包和 12 支水性笔,而$12<24$,
购买方案一:用优惠方法①购买,需$5x + 60 = 5\times12 + 60 = 120$(元);购买方案二:采用两种购买方式,用优惠方法①购买 4 个书包,需要$4\times20 = 80$(元),同时获赠 4 支水性笔;用优惠方法②购买 8 支水性笔,需要$8\times5\times90\% = 36$(元). 共需$80 + 36 = 116$(元).
显然$116<120$. $\therefore$最佳购买方案是:用优惠方法①购买 4 个书包,获赠 4 支水性笔;再用优惠方法②购买 8 支水性笔.
22. (本小题12分)长方形$ABCD$中,$AB = 4$,$AD = m$,点$P$以每秒1个单位的速度从$A$向$B$运动,点$Q$同时以每秒2个单位的速度从$A$向$D$运动,设$P$,$Q$两点运动时间为$t$,点$E$为边$CD$上任意一点.(点$E$不与点$C$、点$D$重合)
(1)请直接用含$m$、$t$的代数式,表示线段$QD$的长度;
(2)当$m = 5$时,连接$QE$,若$\triangle APQ$与$\triangle EDQ$全等,求$DE$的长;
(3)若在边$AD$上总存在点$Q$使得$\triangle APQ\cong\triangle DQE$,请直接写出$m$的取值范围.

(1)请直接用含$m$、$t$的代数式,表示线段$QD$的长度;
(2)当$m = 5$时,连接$QE$,若$\triangle APQ$与$\triangle EDQ$全等,求$DE$的长;
(3)若在边$AD$上总存在点$Q$使得$\triangle APQ\cong\triangle DQE$,请直接写出$m$的取值范围.
答案:
解:
(1) 根据题意,$AQ = 2t$,
$\therefore QD = AD - AQ = m - 2t$,
$\therefore$线段$QD$的长度为$m - 2t$;
(2) 由题意得:$AQ = 2t$,$AP = t$,$DQ = 5 - 2t$,
当$AP = DQ$时:$t = 5 - 2t$,解得:$t = \frac{5}{3}$
此时$DE = AQ = 2t = \frac{10}{3}$;
当$AQ = DQ$时:$2t = 5 - 2t$. 得$t = \frac{5}{4}$,
此时$DE = AP = t = \frac{5}{4}$;
综上所述:$DE = \frac{10}{3}$或$\frac{5}{4}$时,$\triangle APQ$与$\triangle EDQ$全等;
(3)$\because\triangle APQ\cong\triangle DQE$,$\therefore AP = DQ$,$AQ = DE$,
由$AP = DQ$知:$t = m - 2t$,解得:$t = \frac{m}{3}$,
$\because AB = 4$,$AP\leqslant AB$,$\therefore 0 < t\leqslant4$;
即$0 < \frac{m}{3}\leqslant4$①,$\because 0 < DE\leqslant4$,$\therefore 0 < AQ\leqslant4$,
$\therefore 0 < 2t\leqslant4$,即$0 < \frac{2}{3}m\leqslant4$②;
由①②解得:$0 < m\leqslant6$,
$\therefore$满足条件$m$的取值范围为$0 < m\leqslant6$.
(1) 根据题意,$AQ = 2t$,
$\therefore QD = AD - AQ = m - 2t$,
$\therefore$线段$QD$的长度为$m - 2t$;
(2) 由题意得:$AQ = 2t$,$AP = t$,$DQ = 5 - 2t$,
当$AP = DQ$时:$t = 5 - 2t$,解得:$t = \frac{5}{3}$
此时$DE = AQ = 2t = \frac{10}{3}$;
当$AQ = DQ$时:$2t = 5 - 2t$. 得$t = \frac{5}{4}$,
此时$DE = AP = t = \frac{5}{4}$;
综上所述:$DE = \frac{10}{3}$或$\frac{5}{4}$时,$\triangle APQ$与$\triangle EDQ$全等;
(3)$\because\triangle APQ\cong\triangle DQE$,$\therefore AP = DQ$,$AQ = DE$,
由$AP = DQ$知:$t = m - 2t$,解得:$t = \frac{m}{3}$,
$\because AB = 4$,$AP\leqslant AB$,$\therefore 0 < t\leqslant4$;
即$0 < \frac{m}{3}\leqslant4$①,$\because 0 < DE\leqslant4$,$\therefore 0 < AQ\leqslant4$,
$\therefore 0 < 2t\leqslant4$,即$0 < \frac{2}{3}m\leqslant4$②;
由①②解得:$0 < m\leqslant6$,
$\therefore$满足条件$m$的取值范围为$0 < m\leqslant6$.
23. (本小题12分)如图,在$\triangle ABC$中,$AB = AC = 2$,$\angle B = 40^{\circ}$,点$D$在线段$BC$上运动($D$不与$B$、$C$重合),连接$AD$,作$\angle ADE = 40^{\circ}$,$DE$交线段$AC$于$E$.
(1)点$D$从$B$向$C$运动时,$\angle BDA$逐渐变________(填“大”或“小”);设$\angle BAD = x^{\circ}$,$\angle BDA = y^{\circ}$,求$y$与$x$的函数关系式;
(2)当$DC$的长度是多少时,$\triangle ABD\cong\triangle DCE$?请说明理由;
(3)在点$D$的运动过程中,$\triangle ADE$的形状也在改变,当$\angle BDA$等于多少度时,$\triangle ADE$是等腰三角形?判断并说明理由.

(1)点$D$从$B$向$C$运动时,$\angle BDA$逐渐变________(填“大”或“小”);设$\angle BAD = x^{\circ}$,$\angle BDA = y^{\circ}$,求$y$与$x$的函数关系式;
(2)当$DC$的长度是多少时,$\triangle ABD\cong\triangle DCE$?请说明理由;
(3)在点$D$的运动过程中,$\triangle ADE$的形状也在改变,当$\angle BDA$等于多少度时,$\triangle ADE$是等腰三角形?判断并说明理由.
答案:
解:
(1) 在$\triangle ABD$中,$\angle B+\angle BAD+\angle ADB = 180^{\circ}$,$\therefore 40 + x + y = 180$,$\therefore y = 140 - x(0 < x < 100)$,当点$B$从点$B$向$C$运动时,$x$增大,$\therefore y$减小.
(2) 当$DC = 2$时,$\triangle ABD\cong\triangle DCE$,理由:$\angle C = 40^{\circ}$,
$\therefore\angle DEC + EDC = 140^{\circ}$,又$\because\angle ADE = 40^{\circ}$,
$\therefore\angle ADB + \angle EDC = 140^{\circ}$,$\therefore\angle ADB = \angle DEC$,
又$\because AB = DC = 2$,在$\triangle ABD$和$\triangle DCE$中
$\begin{cases}\angle ADB = \angle DEC\\\angle B = \angle C\\AB = DC\end{cases}$,$\therefore\triangle ABD = \triangle DCE(AAS)$.
(3) 当$\angle BDA$的度数为$110^{\circ}$或$80^{\circ}$时,$\triangle ADE$的形状是等腰三角形,理由:在$\triangle ABC$中,$AB = AC$,$\angle B = 40^{\circ}$,$\therefore\angle BAC = 100^{\circ}$,①当$AD = AE$时,$\angle AED = \angle ADE = 40^{\circ}$,$\therefore\angle DAE = 100^{\circ}$,不符合题意,舍去. ②当$AD = ED$时,$\angle DAE = \angle DEA$,根据三角形的内角和得,$\angle DAE = \frac{1}{2}(180^{\circ} - 40^{\circ}) = 70^{\circ}$,$\therefore\angle BAD = \angle BAC - \angle DAE = 100^{\circ} - 70^{\circ} = 30^{\circ}$,$\therefore\angle BDA = 180^{\circ} - \angle B - \angle BAD = 110^{\circ}$. ③当$AE = DE$时,$\angle DAE = \angle ADE = 40^{\circ}$,$\therefore\angle BAD = 100^{\circ} - 40^{\circ} = 60^{\circ}$,$\therefore\angle BDA = 180^{\circ} - 40^{\circ} - 60^{\circ} = 80^{\circ}$,$\therefore\angle BDA$的度数为$110^{\circ}$或$80^{\circ}$时,$\triangle ADE$是等腰三角形.
(1) 在$\triangle ABD$中,$\angle B+\angle BAD+\angle ADB = 180^{\circ}$,$\therefore 40 + x + y = 180$,$\therefore y = 140 - x(0 < x < 100)$,当点$B$从点$B$向$C$运动时,$x$增大,$\therefore y$减小.
(2) 当$DC = 2$时,$\triangle ABD\cong\triangle DCE$,理由:$\angle C = 40^{\circ}$,
$\therefore\angle DEC + EDC = 140^{\circ}$,又$\because\angle ADE = 40^{\circ}$,
$\therefore\angle ADB + \angle EDC = 140^{\circ}$,$\therefore\angle ADB = \angle DEC$,
又$\because AB = DC = 2$,在$\triangle ABD$和$\triangle DCE$中
$\begin{cases}\angle ADB = \angle DEC\\\angle B = \angle C\\AB = DC\end{cases}$,$\therefore\triangle ABD = \triangle DCE(AAS)$.
(3) 当$\angle BDA$的度数为$110^{\circ}$或$80^{\circ}$时,$\triangle ADE$的形状是等腰三角形,理由:在$\triangle ABC$中,$AB = AC$,$\angle B = 40^{\circ}$,$\therefore\angle BAC = 100^{\circ}$,①当$AD = AE$时,$\angle AED = \angle ADE = 40^{\circ}$,$\therefore\angle DAE = 100^{\circ}$,不符合题意,舍去. ②当$AD = ED$时,$\angle DAE = \angle DEA$,根据三角形的内角和得,$\angle DAE = \frac{1}{2}(180^{\circ} - 40^{\circ}) = 70^{\circ}$,$\therefore\angle BAD = \angle BAC - \angle DAE = 100^{\circ} - 70^{\circ} = 30^{\circ}$,$\therefore\angle BDA = 180^{\circ} - \angle B - \angle BAD = 110^{\circ}$. ③当$AE = DE$时,$\angle DAE = \angle ADE = 40^{\circ}$,$\therefore\angle BAD = 100^{\circ} - 40^{\circ} = 60^{\circ}$,$\therefore\angle BDA = 180^{\circ} - 40^{\circ} - 60^{\circ} = 80^{\circ}$,$\therefore\angle BDA$的度数为$110^{\circ}$或$80^{\circ}$时,$\triangle ADE$是等腰三角形.
查看更多完整答案,请扫码查看