第54页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
24. (12 分) 四边形 $ABCD$ 内接于 $\odot O$,$AC$ 为 $\odot O$ 的直径,连结 $BD$,过 $A$ 作 $AH \perp BD$ 于点 $H$。
(1)如图 1,求证:$\angle BAC = \angle DAH$;
(2)如图 2,延长 $AH$ 交 $CD$ 于点 $G$,连结 $OD$,且 $OD // AB$。
① 求证:$BD = CD$;
② 若 $\cos\angle BAC = \frac{3}{5}$,$AH = 3$,求 $CG$ 的长。

(1)如图 1,求证:$\angle BAC = \angle DAH$;
(2)如图 2,延长 $AH$ 交 $CD$ 于点 $G$,连结 $OD$,且 $OD // AB$。
① 求证:$BD = CD$;
② 若 $\cos\angle BAC = \frac{3}{5}$,$AH = 3$,求 $CG$ 的长。
答案:
24.
(1)证明:$\because AC$为$\odot O$的直径,$AH\perp BD$于点H,$\therefore \angle ABC = \angle AHD = 90°$,$\therefore \angle BAC + \angle ACB = 90°$,$\angle DAH + \angle ADB = 90°$。$\because \angle ACB = \angle ADB$,$\therefore \angle BAC = \angle DAH$。
(2)①证明:$\because OD// AB$,$\therefore \angle AOD = \angle BAC$。$\because \angle BAC = \angle BDC$,$\therefore \angle AOD = \angle BDC$。$\because \angle OAD = \angle DBC$,$\therefore \triangle OAD\sim \triangle DBC$,$\therefore \angle ODA = \angle DCB$。$\because OD = OA$,$\therefore \angle OAD = \angle ODA$,$\therefore \angle DBC = \angle DCB$,$\therefore BD = CD$。
②解:如图,作$DL\perp AC$于点L,则$\angle OLD = \angle ALD = \angle ADC = 90°$。$\because \angle ABC = \angle AHD = 90°$,$\angle BAC = \angle DAH$,$\therefore \frac{AD}{AG} = \frac{AH}{AD} = \cos \angle DAH = \cos \angle BAC = \frac{3}{5}$。$\because AH = 3$,$\therefore AD = \frac{5}{3}AH = \frac{5}{3}× 3 = 5$,$\therefore AG = \frac{5}{3}AD = \frac{5}{3}× 5 = \frac{25}{3}$,$\therefore DG = \sqrt{AG^2 - AD^2} = \sqrt{(\frac{25}{3})^2 - 5^2} = \frac{20}{3}$。设$OD = OA = 5m$,$\because \angle AOD = \angle BAC$,$\therefore \frac{OL}{OD} = \cos \angle AOD = \cos \angle BAC = \frac{3}{5}$,$\therefore OL = \frac{3}{5}OD = \frac{3}{5}× 5 = 3m$,$\therefore AL = OA - OL = 5m - 3m = 2m$,$DL = \sqrt{OD^2 - OL^2} = \sqrt{(5m)^2 - (3m)^2} = 4m$。$\because \frac{CD}{AD} = \frac{DL}{AL} = \tan \angle CAD = \frac{4m}{2m} = 2$,$\therefore CD = 2AD = 2× 5 = 10$,$\therefore CG = CD - DG = 10 - \frac{20}{3} = \frac{10}{3}$,$\therefore CG$的长是$\frac{10}{3}$。
24.
(1)证明:$\because AC$为$\odot O$的直径,$AH\perp BD$于点H,$\therefore \angle ABC = \angle AHD = 90°$,$\therefore \angle BAC + \angle ACB = 90°$,$\angle DAH + \angle ADB = 90°$。$\because \angle ACB = \angle ADB$,$\therefore \angle BAC = \angle DAH$。
(2)①证明:$\because OD// AB$,$\therefore \angle AOD = \angle BAC$。$\because \angle BAC = \angle BDC$,$\therefore \angle AOD = \angle BDC$。$\because \angle OAD = \angle DBC$,$\therefore \triangle OAD\sim \triangle DBC$,$\therefore \angle ODA = \angle DCB$。$\because OD = OA$,$\therefore \angle OAD = \angle ODA$,$\therefore \angle DBC = \angle DCB$,$\therefore BD = CD$。
②解:如图,作$DL\perp AC$于点L,则$\angle OLD = \angle ALD = \angle ADC = 90°$。$\because \angle ABC = \angle AHD = 90°$,$\angle BAC = \angle DAH$,$\therefore \frac{AD}{AG} = \frac{AH}{AD} = \cos \angle DAH = \cos \angle BAC = \frac{3}{5}$。$\because AH = 3$,$\therefore AD = \frac{5}{3}AH = \frac{5}{3}× 3 = 5$,$\therefore AG = \frac{5}{3}AD = \frac{5}{3}× 5 = \frac{25}{3}$,$\therefore DG = \sqrt{AG^2 - AD^2} = \sqrt{(\frac{25}{3})^2 - 5^2} = \frac{20}{3}$。设$OD = OA = 5m$,$\because \angle AOD = \angle BAC$,$\therefore \frac{OL}{OD} = \cos \angle AOD = \cos \angle BAC = \frac{3}{5}$,$\therefore OL = \frac{3}{5}OD = \frac{3}{5}× 5 = 3m$,$\therefore AL = OA - OL = 5m - 3m = 2m$,$DL = \sqrt{OD^2 - OL^2} = \sqrt{(5m)^2 - (3m)^2} = 4m$。$\because \frac{CD}{AD} = \frac{DL}{AL} = \tan \angle CAD = \frac{4m}{2m} = 2$,$\therefore CD = 2AD = 2× 5 = 10$,$\therefore CG = CD - DG = 10 - \frac{20}{3} = \frac{10}{3}$,$\therefore CG$的长是$\frac{10}{3}$。
查看更多完整答案,请扫码查看