2025年领智优选浙江期末复习卷九年级数学全一册浙教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年领智优选浙江期末复习卷九年级数学全一册浙教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年领智优选浙江期末复习卷九年级数学全一册浙教版》

23. (9 分)如图,等腰$\triangle ABC$内接于$\odot O$,$AB = AC$,D 为$\overset{\frown}{AC}$上一点,连结 BD 交 AC 于点 E,连结 AD 并延长交 BC 的延长线于点 F.
(1)求证:$\triangle CDF\backsim\triangle ABF$;
(2)若$BD\perp AC$.
①求证:$\angle BAC = 2\angle CAF$;
②当$\frac{AB}{BC}=\frac{\sqrt{10}}{2}$时,求$\frac{S_{\triangle CDF}}{S_{\triangle ABF}}$的值.
答案:
23.
(1)证明:$\because$等腰$\triangle ABC$内接于$\odot O$,$AB = AC$,D为$\overset{\frown}{AC}$上一点,$\therefore \angle BAD+\angle BCD = 180^{\circ}$.
$\because \angle BCD+\angle FCD = 180^{\circ}$,$\therefore \angle BAD = \angle FCD$,
$\because \angle F = \angle F$,$\therefore \triangle CDF\backsim \triangle ABF$.
(2)①证明:等腰$\triangle ABC$内接于$\odot O$,如图1,过点A作$AG\perp BC$于点G,则$\angle AGC = 90^{\circ}$.
BGC图1
$\therefore \angle BAC = 2\angle CAG$,$\angle ACG+\angle CAG = 90^{\circ}$.
$\because BD\perp AC$,$\therefore \angle BEC = 90^{\circ}$,
$\therefore \angle BCE+\angle CBE = 90^{\circ}$,$\therefore \angle CAG = \angle CBE$.
$\because \angle CAF = \angle CBD$,$\therefore \angle BAC = 2\angle CAF$.
②解:延长AG交$\odot O$于点H,连结BH,如图2,
BiC图2
由①知,$AG\perp BC$,$BG = CG$,
$\therefore AG$过点O,
$\therefore \angle ABH = \angle AGB = 90^{\circ}$.
$\because \angle BAH = \angle GAB$,
$\therefore \triangle AHB\backsim \triangle ABG$,
$\therefore \frac{BH}{BG}=\frac{AB}{AG}$,
$\because \frac{AB}{BC}=\frac{\sqrt{10}}{2}$,$\therefore \frac{AB}{BG}=\sqrt{10}$,$AB = \sqrt{10}BG$,
在直角三角形ABG中,由勾股定理,得$AG = \sqrt{AB^{2}-BG^{2}} = 3BG$,$\therefore BH=\frac{\sqrt{10}}{3}BG$,
$\because \angle BAH = \angle CAH = \angle CBD = \angle CAD$,
$\therefore CD = BH=\frac{\sqrt{10}}{3}BG$,

(1)知,$\triangle CDF\backsim \triangle ABF$,
$\therefore \frac{S_{\triangle CDF}}{S_{\triangle ABF}}=(\frac{CD}{AB})^{2}=(\frac{\frac{\sqrt{10}}{3}BG}{\sqrt{10}BG})^{2}=\frac{1}{9}$.

查看更多完整答案,请扫码查看

关闭