第26页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
8. 在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$AB = 13$,$AC = 12$,则$\cos A =$
$\frac{12}{13}$
。
答案:
8.$\frac{12}{13}$ 解析:在$Rt\triangle ABC$中$,\angle C = 90°$,
$AB = 13,AC = 12$,
$\therefore \cos A = \frac{AC}{AB} = \frac{12}{13}$.
$AB = 13,AC = 12$,
$\therefore \cos A = \frac{AC}{AB} = \frac{12}{13}$.
9. 如图,在$8× 4$的矩形网格中,每个小正方形的边长都是1,若$\triangle ABC$的三个顶点在图中相应的格点上,则$\tan \angle ACB$的值为

$\frac{1}{3}$
。
答案:
9.$\frac{1}{3}$ 解析:由图形知:$\tan\angle ACB = \frac{2}{6} = \frac{1}{3}$.
10. 为了学生的安全,某校决定把一段如图所示的步梯路段进行改造。已知四边形$ABCD$为矩形,$DE = 10m$,其坡度为$i_1 = 1 : \sqrt{3}$,将步梯$DE$改造为斜坡$AF$,其坡度为$i_2 = 1 : 4$,则斜坡$AF$的长度是

20.62
m。(结果精确到$0.01m$,参考数据:$\sqrt{3} \approx 1.732$,$\sqrt{17} \approx 4.123$)
答案:
10.20.62 解析:$\because$斜坡$DE$的坡度为$i_1 = 1 : \sqrt{3}$,
$\therefore \tan\angle DEC = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$,
$\therefore \angle DEC = 30°$,
$\therefore DC = \frac{1}{2}DE = 5$(m),
$\because$四边形$ABCD$为矩形,
$\therefore AB = CD = 5$m,
$\because$斜坡$AF$的坡度为$i_2 = 1 : 4,AB = 5$m,
$\therefore BF = 4AB = 20$(m),
在$Rt\triangle ABF$中$,AF = \sqrt{AB^2 + BF^2} = \sqrt{5^2 + 20^2} \approx 20.62$(m),
$\therefore$斜坡$AF$的长度约为$20.62$m.
$\therefore \tan\angle DEC = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$,
$\therefore \angle DEC = 30°$,
$\therefore DC = \frac{1}{2}DE = 5$(m),
$\because$四边形$ABCD$为矩形,
$\therefore AB = CD = 5$m,
$\because$斜坡$AF$的坡度为$i_2 = 1 : 4,AB = 5$m,
$\therefore BF = 4AB = 20$(m),
在$Rt\triangle ABF$中$,AF = \sqrt{AB^2 + BF^2} = \sqrt{5^2 + 20^2} \approx 20.62$(m),
$\therefore$斜坡$AF$的长度约为$20.62$m.
11. 某商场引进消毒机器人每天进行全场消毒工作,该机器人采取精准直线喷射技术,实现了准确、快速和节约的目标。在设置参数的时候,工作人员通过对商场门口身形高大的“大黄蜂”进行多次消毒试验发现:如图,若对$A$点进行消毒,适当调整机器人$CD$到$AB$的距离,使得$\sin (\alpha - \beta)$的值尽可能的大,能提高消毒的效率。已知“大黄蜂”$AB$身高2.5米,机器人$CD$高0.4米。则当$\sin (\alpha - \beta)$最大时,机器人$CD$和“大黄蜂”$AB$之间距离$BC$等于

$\frac{\sqrt{21}}{2}$
m。
答案:
11.$\frac{\sqrt{21}}{2}$ 解析:如图,过点$C$作$CF \perp AE$于点$F$,
设$BC = x$m,
根据题意得$CD \perp BE,AB \perp BE,AB = 2.5$m,$CD = 0.4$m,
$\therefore CD // AB$,
$\therefore \triangle CDE \backsim \triangle BAE$,
$\therefore \frac{CD}{AB} = \frac{CE}{BE}$,即$\frac{0.4}{2.5} = \frac{CE}{CE + x}$,
解得$CE = \frac{4}{21}x$m,
$\because \alpha = \beta + \angle CAF$,
$\therefore \angle CAF = \alpha - \beta$,
$\therefore$当$\sin(\alpha - \beta)$最大时$,\sin\angle CAF$最大,
$\therefore (\sin\angle CAF)^2$最大,即$\frac{CF^2}{AC^2}$最大,
在$Rt\triangle ABC$中$,AC^2 = BC^2 + AB^2 = x^2 + \frac{25}{4} = \frac{4x^2 + 25}{4}$,
在$Rt\triangle CDE$中$,DE^2 = CE^2 + CD^2 = \frac{16}{441}x^2 + \frac{4}{25}$,
$\because \frac{1}{2}CD · CE = \frac{1}{2}DE · CF$,
$\therefore CD^2 · CE^2 = DE^2 · CF^2$,
$\therefore CF^2 = \frac{CD^2 · CE^2}{DE^2} = \frac{\frac{4}{25} × \frac{16}{441}x^2}{\frac{16}{441}x^2 + \frac{4}{25}} = \frac{16x^2}{441 + 100x^2}$,
$\therefore \frac{CF^2}{AC^2} = \frac{\frac{16x^2}{441 + 100x^2}}{\frac{4x^2 + 25}{4}} = \frac{64x^2}{400x^4 + 4264x^2 + 11025}$,
$\because x \neq 0$,
$\therefore \frac{CF^2}{AC^2} = \frac{64}{400x^2 + \frac{11025}{x^2} + 4264}$,
$\because \frac{CF^2}{AC^2}$最大,
$\therefore 400x^2 + \frac{11025}{x^2} + 4264$最小,即$400x^2 + \frac{11025}{x^2}$最小,
$\because \left( \sqrt{400x^2} - \sqrt{\frac{11025}{x^2}} \right)^2 \geq 0$,即$400x^2 + \frac{11025}{x^2} \geq 2\sqrt{400x^2 · \frac{11025}{x^2}}$,
$\therefore$当$\sqrt{400x^2} = \sqrt{\frac{11025}{x^2}}$,即$x = \frac{\sqrt{21}}{2}$或$-\frac{\sqrt{21}}{2}$(舍去)时,$400x^2 + \frac{11025}{x^2}$最小,
即当$\sin(\alpha - \beta)$最大时,机器人$CD$和“大黄蜂”$AB$之间距离$BC$为$\frac{\sqrt{21}}{2}$m.
11.$\frac{\sqrt{21}}{2}$ 解析:如图,过点$C$作$CF \perp AE$于点$F$,
设$BC = x$m,
根据题意得$CD \perp BE,AB \perp BE,AB = 2.5$m,$CD = 0.4$m,
$\therefore CD // AB$,
$\therefore \triangle CDE \backsim \triangle BAE$,
$\therefore \frac{CD}{AB} = \frac{CE}{BE}$,即$\frac{0.4}{2.5} = \frac{CE}{CE + x}$,
解得$CE = \frac{4}{21}x$m,
$\because \alpha = \beta + \angle CAF$,
$\therefore \angle CAF = \alpha - \beta$,
$\therefore$当$\sin(\alpha - \beta)$最大时$,\sin\angle CAF$最大,
$\therefore (\sin\angle CAF)^2$最大,即$\frac{CF^2}{AC^2}$最大,
在$Rt\triangle ABC$中$,AC^2 = BC^2 + AB^2 = x^2 + \frac{25}{4} = \frac{4x^2 + 25}{4}$,
在$Rt\triangle CDE$中$,DE^2 = CE^2 + CD^2 = \frac{16}{441}x^2 + \frac{4}{25}$,
$\because \frac{1}{2}CD · CE = \frac{1}{2}DE · CF$,
$\therefore CD^2 · CE^2 = DE^2 · CF^2$,
$\therefore CF^2 = \frac{CD^2 · CE^2}{DE^2} = \frac{\frac{4}{25} × \frac{16}{441}x^2}{\frac{16}{441}x^2 + \frac{4}{25}} = \frac{16x^2}{441 + 100x^2}$,
$\therefore \frac{CF^2}{AC^2} = \frac{\frac{16x^2}{441 + 100x^2}}{\frac{4x^2 + 25}{4}} = \frac{64x^2}{400x^4 + 4264x^2 + 11025}$,
$\because x \neq 0$,
$\therefore \frac{CF^2}{AC^2} = \frac{64}{400x^2 + \frac{11025}{x^2} + 4264}$,
$\because \frac{CF^2}{AC^2}$最大,
$\therefore 400x^2 + \frac{11025}{x^2} + 4264$最小,即$400x^2 + \frac{11025}{x^2}$最小,
$\because \left( \sqrt{400x^2} - \sqrt{\frac{11025}{x^2}} \right)^2 \geq 0$,即$400x^2 + \frac{11025}{x^2} \geq 2\sqrt{400x^2 · \frac{11025}{x^2}}$,
$\therefore$当$\sqrt{400x^2} = \sqrt{\frac{11025}{x^2}}$,即$x = \frac{\sqrt{21}}{2}$或$-\frac{\sqrt{21}}{2}$(舍去)时,$400x^2 + \frac{11025}{x^2}$最小,
即当$\sin(\alpha - \beta)$最大时,机器人$CD$和“大黄蜂”$AB$之间距离$BC$为$\frac{\sqrt{21}}{2}$m.
查看更多完整答案,请扫码查看