第50页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
9. 如图,在 $Rt\triangle ABC$ 中,$\angle ABC = 90^{\circ}$,以 $AB$,$AC$ 为边分别向外作正方形 $ABFG$ 和正方形 $ACDE$,$CG$ 交 $AB$ 于点 $M$,$BD$ 交 $AC$ 于点 $N$。若 $\frac{GM}{CM} = \frac{1}{2}$,则 $\frac{AN}{CN} =$(

A.$\frac{1}{2}$
B.$\frac{3}{4}$
C.$\frac{2\sqrt{5}}{5}$
D.1
B
)A.$\frac{1}{2}$
B.$\frac{3}{4}$
C.$\frac{2\sqrt{5}}{5}$
D.1
答案:
9.B 解析:如图,过点D作$DP\perp BC$,交AC的延长线于点P,交BC的延长线于点H。$\because AG// BF$,$\therefore \triangle AGM\sim \triangle BCM$,$\therefore \frac{AG}{BC} = \frac{GM}{CM} = \frac{1}{2}$,$\therefore$设$AG = a = AB$,则$BC = 2a$。$\because DH\perp BC$,$AB\perp BC$,$\therefore \angle DHC = \angle ABC = \angle ACD = 90°$,$AB// DH$,$\therefore \angle DCH + \angle ACB = 90° = \angle ACB + \angle BAC$,$\therefore \angle DCH = \angle BAC$。在$\triangle ABC$和$\triangle CHD$中,$\begin{cases} \angle ABC = \angle CHD \\ \angle BAC = \angle HCD \\ AC = CD \end{cases}$,$\therefore \triangle ABC\cong \triangle CHD(AAS)$,$\therefore CH = AB = a$,$DH = CB = 2a$。$\because AB// DP$,$\therefore \triangle ABC\sim \triangle PHC$,$\therefore \frac{AC}{PC} = \frac{AB}{PH} = \frac{BC}{HC} = 2$,$\therefore HP = \frac{1}{2}AB = \frac{a}{2}$,$AC = 2CP$,$\therefore DP = \frac{5}{2}a$。$\because AB// DH$,$\therefore \triangle ABN\sim \triangle PDN$,$\therefore \frac{AN}{PN} = \frac{AB}{PD} = \frac{2}{5}$,设$AN = 2b$,则$NP = 5b$,$\therefore AP = 7b = AC + CP = 3CP$,$\therefore CP = \frac{7b}{3}$,$\therefore AC = \frac{14b}{3}$,$CN = \frac{8b}{3}$,$\therefore \frac{AN}{CN} = \frac{2b}{\frac{8b}{3}} = \frac{3}{4}$。故选:B。
9.B 解析:如图,过点D作$DP\perp BC$,交AC的延长线于点P,交BC的延长线于点H。$\because AG// BF$,$\therefore \triangle AGM\sim \triangle BCM$,$\therefore \frac{AG}{BC} = \frac{GM}{CM} = \frac{1}{2}$,$\therefore$设$AG = a = AB$,则$BC = 2a$。$\because DH\perp BC$,$AB\perp BC$,$\therefore \angle DHC = \angle ABC = \angle ACD = 90°$,$AB// DH$,$\therefore \angle DCH + \angle ACB = 90° = \angle ACB + \angle BAC$,$\therefore \angle DCH = \angle BAC$。在$\triangle ABC$和$\triangle CHD$中,$\begin{cases} \angle ABC = \angle CHD \\ \angle BAC = \angle HCD \\ AC = CD \end{cases}$,$\therefore \triangle ABC\cong \triangle CHD(AAS)$,$\therefore CH = AB = a$,$DH = CB = 2a$。$\because AB// DP$,$\therefore \triangle ABC\sim \triangle PHC$,$\therefore \frac{AC}{PC} = \frac{AB}{PH} = \frac{BC}{HC} = 2$,$\therefore HP = \frac{1}{2}AB = \frac{a}{2}$,$AC = 2CP$,$\therefore DP = \frac{5}{2}a$。$\because AB// DH$,$\therefore \triangle ABN\sim \triangle PDN$,$\therefore \frac{AN}{PN} = \frac{AB}{PD} = \frac{2}{5}$,设$AN = 2b$,则$NP = 5b$,$\therefore AP = 7b = AC + CP = 3CP$,$\therefore CP = \frac{7b}{3}$,$\therefore AC = \frac{14b}{3}$,$CN = \frac{8b}{3}$,$\therefore \frac{AN}{CN} = \frac{2b}{\frac{8b}{3}} = \frac{3}{4}$。故选:B。
10. 如图,在平面直角坐标系中 $y = -\frac{3}{4}(x - 4)(x + 1)$,与 $x$ 轴交于 $A$,$B$ 两点(点 $A$ 在点 $B$ 的左侧),与 $y$ 轴交于点 $C$,点 $P$ 是 $BC$ 上方抛物线上一点,连结 $AP$ 交 $BC$ 于 $D$,连结 $AC$,$CP$,记 $\triangle ACD$ 的面积为 $S_1$,$\triangle PCD$ 的面积为 $S_2$,则 $\frac{S_2}{S_1}$ 的最大值为(

A.$\frac{3}{4}$
B.$\frac{3}{5}$
C.$\frac{4}{5}$
D.1
C
)A.$\frac{3}{4}$
B.$\frac{3}{5}$
C.$\frac{4}{5}$
D.1
答案:
10.C 解析:由题意知$\frac{S_2}{S_1} = \frac{PD}{AD}$,如图,过点P作x轴的平行线交BC的延长线于点M。
$\because PM// x$轴,$\therefore \triangle PMD\sim \triangle ABD$,$\therefore \frac{PD}{AD} = \frac{PM}{AB}$。由$y = -\frac{3}{4}(x - 4)(x + 1)$,得$A(-1,0)$,$B(4,0)$,$\therefore AB = 4 - (-1) = 5$。将$x = 0$代入$y = -\frac{3}{4}(x - 4)(x + 1)$,得$y = 3$,$\therefore$点C的坐标为$(0,3)$。设直线BC的函数表达式为$y = kx + b(k\neq0)$,则$\begin{cases} 4k + b = 0 \\ b = 3 \end{cases}$,解得$\begin{cases} k = -\frac{3}{4} \\ b = 3 \end{cases}$,$\therefore$直线BC的函数表达式为$y = -\frac{3}{4}x + 3$。$\because y = -\frac{3}{4}(x - 4)(x + 1) = -\frac{3}{4}x^2 + \frac{9}{4}x + 3$,令点P坐标为$(m,-\frac{3}{4}m^2 + \frac{9}{4}m + 3)$,则$y_M = -\frac{3}{4}m^2 + \frac{9}{4}m + 3$,$\therefore -\frac{3}{4}m^2 + \frac{9}{4}m + 3 = -\frac{3}{4}x_M + 3$,$\therefore x_M = m^2 - 3m$,则$PM = m - (m^2 - 3m) = -m^2 + 4m$,$\therefore \frac{PM}{AB} = \frac{-m^2 + 4m}{5} = -\frac{1}{5}(m - 2)^2 + \frac{4}{5}$,则当$m = 2$时,$\frac{PM}{AB}$有最大值为$\frac{4}{5}$,即$\frac{S_2}{S_1}$的最大值为$\frac{4}{5}$。故选:C。
10.C 解析:由题意知$\frac{S_2}{S_1} = \frac{PD}{AD}$,如图,过点P作x轴的平行线交BC的延长线于点M。
$\because PM// x$轴,$\therefore \triangle PMD\sim \triangle ABD$,$\therefore \frac{PD}{AD} = \frac{PM}{AB}$。由$y = -\frac{3}{4}(x - 4)(x + 1)$,得$A(-1,0)$,$B(4,0)$,$\therefore AB = 4 - (-1) = 5$。将$x = 0$代入$y = -\frac{3}{4}(x - 4)(x + 1)$,得$y = 3$,$\therefore$点C的坐标为$(0,3)$。设直线BC的函数表达式为$y = kx + b(k\neq0)$,则$\begin{cases} 4k + b = 0 \\ b = 3 \end{cases}$,解得$\begin{cases} k = -\frac{3}{4} \\ b = 3 \end{cases}$,$\therefore$直线BC的函数表达式为$y = -\frac{3}{4}x + 3$。$\because y = -\frac{3}{4}(x - 4)(x + 1) = -\frac{3}{4}x^2 + \frac{9}{4}x + 3$,令点P坐标为$(m,-\frac{3}{4}m^2 + \frac{9}{4}m + 3)$,则$y_M = -\frac{3}{4}m^2 + \frac{9}{4}m + 3$,$\therefore -\frac{3}{4}m^2 + \frac{9}{4}m + 3 = -\frac{3}{4}x_M + 3$,$\therefore x_M = m^2 - 3m$,则$PM = m - (m^2 - 3m) = -m^2 + 4m$,$\therefore \frac{PM}{AB} = \frac{-m^2 + 4m}{5} = -\frac{1}{5}(m - 2)^2 + \frac{4}{5}$,则当$m = 2$时,$\frac{PM}{AB}$有最大值为$\frac{4}{5}$,即$\frac{S_2}{S_1}$的最大值为$\frac{4}{5}$。故选:C。
11. 抛物线 $y = -2(x - 3)^2 + 8$ 的顶点坐标是
(3,8)
。
答案:
11.$(3,8)$ 解析:$\because$抛物线为$y = -2(x - 3)^2 + 8$,$\therefore$抛物线的顶点坐标为$(3,8)$。故答案为$(3,8)$。
12. 如图,$\triangle ABC$ 的顶点都在方格纸的格点上,则 $\tan A =$

$\frac{1}{2}$
。
答案:
12.$\frac{1}{2}$ 解析:如图,在$\triangle ACD$中,$\because \angle ADC = 90°$,$CD = 2$,$AD = 4$,$\therefore \tan A = \frac{CD}{AD} = \frac{2}{4} = \frac{1}{2}$。故答案为$\frac{1}{2}$。
12.$\frac{1}{2}$ 解析:如图,在$\triangle ACD$中,$\because \angle ADC = 90°$,$CD = 2$,$AD = 4$,$\therefore \tan A = \frac{CD}{AD} = \frac{2}{4} = \frac{1}{2}$。故答案为$\frac{1}{2}$。
13. 已知点 $P$ 是线段 $AB$ 的黄金分割点($AP > PB$),$AB = 6$,那么 $AP$ 的长是
$3\sqrt{5}-3$
。
答案:
13.$3\sqrt{5} - 3$ 解析:由于P为线段$AB = 6$的黄金分割点,且AP是较长线段,则$AP = 6× \frac{\sqrt{5} - 1}{2} = 3\sqrt{5} - 3$。故答案为$3\sqrt{5} - 3$。
14. 如图,$C$,$D$ 是以 $AB$ 为直径的半圆周的三等分点,$CD = 6\ cm$,则阴影部分的面积是

$6\pi$
$cm^2$。(结果保留 $\pi$)
答案:
14.$6\pi$ 解析:如图,连结OC,OD,$\because$C,D是以AB为直径的半圆周的三等分点,$\therefore \angle AOC = \angle COD = \angle BOD = 60°$。又$\because OC = OD$,$\therefore \triangle OCD$是等边三角形,$\therefore \angle CDO = 60°$,$OD = CD = 6cm$,$\therefore \angle CDO = \angle BOD$,$\therefore CD// AB$,$\therefore S_{\triangle OCD} = S_{\triangle ACD}$,$\therefore S_{阴影} = S_{扇形OCD}$。又$\because S_{扇形OCD} = \frac{60× \pi× 6^2}{360} = 6\pi(cm^2)$,$\therefore S_{阴影} = 6\picm^2$。故答案为$6\pi$。
14.$6\pi$ 解析:如图,连结OC,OD,$\because$C,D是以AB为直径的半圆周的三等分点,$\therefore \angle AOC = \angle COD = \angle BOD = 60°$。又$\because OC = OD$,$\therefore \triangle OCD$是等边三角形,$\therefore \angle CDO = 60°$,$OD = CD = 6cm$,$\therefore \angle CDO = \angle BOD$,$\therefore CD// AB$,$\therefore S_{\triangle OCD} = S_{\triangle ACD}$,$\therefore S_{阴影} = S_{扇形OCD}$。又$\because S_{扇形OCD} = \frac{60× \pi× 6^2}{360} = 6\pi(cm^2)$,$\therefore S_{阴影} = 6\picm^2$。故答案为$6\pi$。
15. 已知抛物线 $y = a(x - h)^2 + k$ 与直线 $y = 1$ 有两个交点 $A(-1,1)$,$B(3,1)$,抛物线 $y = a(x - h + m)^2 + k$ 与直线 $y = 1$ 的一个交点是 $(-3,1)$,则 $m$ 的值是
2或6
。
答案:
15.2或6 解析:由抛物线$y = a(x - h)^2 + k$向左平移m个单位得到抛物线$y = a(x - h + m)^2 + k$,而$A(-1,1)$,$B(3,1)$向左平移2或6个单位得到点$(-3,1)$,得$m = 2$或6。故答案为2或6。
16. 如图,在等腰 $Rt\triangle ABC$ 中,$\angle BAC = 90^{\circ}$,$D$ 是 $BC$ 边上一点,$BD = 2DC$,连结 $AD$,点 $E$ 在线段 $AD$ 上,若 $\angle BEC = 135^{\circ}$,则 $\frac{CE}{AC}$ 的值为

$\frac{\sqrt{10}}{5}$
。
答案:
16.$\frac{\sqrt{10}}{5}$ 解析:如图,过点E作$PQ// BC$交AB于点P,交AC于点Q,则$\triangle APE\sim \triangle ABD$,$\triangle AQE\sim \triangle ACD$,$\therefore \frac{PE}{BD} = \frac{AE}{AD} = \frac{EQ}{DC}$。$\because BD = 2DC$,$\therefore \frac{PE}{2DC} = \frac{EQ}{DC}$,$\therefore \frac{PE}{EQ} = \frac{2DC}{DC} = 2$,$\therefore PE = 2EQ = PQ - EQ$,$\therefore EQ = \frac{1}{3}PQ$。$\because \triangle ABC$是等腰直角三角形,$\angle BAC = 90°$,$\therefore AB = AC$,$\angle ABC = \angle ACB = 45°$,$\therefore \angle BPE = \angle EQC = 135°$,$\angle APQ = \angle AQP$,$\therefore AP = AQ$,$\therefore BP = AB - AP = AC - AQ = QC$。$\because \angle BEC = 135°$,$\therefore \angle QEC + \angle PEB = 45°$,$\therefore \angle PBE + \angle PEB = \angle APQ = 45°$,$\therefore \angle PBE = \angle QEC$,$\therefore \triangle PBE\sim \triangle QEC$,$\therefore \frac{BP}{EQ} = \frac{PE}{QC}$,$\therefore QC^2 = 2EQ^2$,$\therefore QC = \sqrt{2}EQ = \sqrt{2}× \frac{1}{3}PQ = \frac{\sqrt{2}}{3}PQ$。$\because PQ = \sqrt{AP^2 + AQ^2} = \sqrt{2}AQ$,$EQ = \frac{\sqrt{2}}{2}QC$,$\therefore QC = \frac{\sqrt{2}}{3}× \sqrt{2}AQ = \frac{2}{3}AQ = \frac{2}{3}(AC - QC)$,$\therefore QC = \frac{2}{5}AC$,$\therefore EQ = \frac{\sqrt{2}}{2}× \frac{2}{5}AC = \frac{\sqrt{2}}{5}AC$。$\because \angle CQE = \angle BEC = 135°$,$\angle CEQ = \angle BCE$,$\therefore \triangle CEQ\sim \triangle BCE$,$\therefore \frac{EQ}{CE} = \frac{CE}{BC}$,$\therefore CE^2 = EQ· BC = \frac{\sqrt{2}}{5}AC× \sqrt{2}AC = \frac{2}{5}AC^2$,$\therefore \frac{CE^2}{AC^2} = \frac{2}{5}$,$\therefore \frac{CE}{AC} = \frac{\sqrt{10}}{5}$。故答案为$\frac{\sqrt{10}}{5}$。
16.$\frac{\sqrt{10}}{5}$ 解析:如图,过点E作$PQ// BC$交AB于点P,交AC于点Q,则$\triangle APE\sim \triangle ABD$,$\triangle AQE\sim \triangle ACD$,$\therefore \frac{PE}{BD} = \frac{AE}{AD} = \frac{EQ}{DC}$。$\because BD = 2DC$,$\therefore \frac{PE}{2DC} = \frac{EQ}{DC}$,$\therefore \frac{PE}{EQ} = \frac{2DC}{DC} = 2$,$\therefore PE = 2EQ = PQ - EQ$,$\therefore EQ = \frac{1}{3}PQ$。$\because \triangle ABC$是等腰直角三角形,$\angle BAC = 90°$,$\therefore AB = AC$,$\angle ABC = \angle ACB = 45°$,$\therefore \angle BPE = \angle EQC = 135°$,$\angle APQ = \angle AQP$,$\therefore AP = AQ$,$\therefore BP = AB - AP = AC - AQ = QC$。$\because \angle BEC = 135°$,$\therefore \angle QEC + \angle PEB = 45°$,$\therefore \angle PBE + \angle PEB = \angle APQ = 45°$,$\therefore \angle PBE = \angle QEC$,$\therefore \triangle PBE\sim \triangle QEC$,$\therefore \frac{BP}{EQ} = \frac{PE}{QC}$,$\therefore QC^2 = 2EQ^2$,$\therefore QC = \sqrt{2}EQ = \sqrt{2}× \frac{1}{3}PQ = \frac{\sqrt{2}}{3}PQ$。$\because PQ = \sqrt{AP^2 + AQ^2} = \sqrt{2}AQ$,$EQ = \frac{\sqrt{2}}{2}QC$,$\therefore QC = \frac{\sqrt{2}}{3}× \sqrt{2}AQ = \frac{2}{3}AQ = \frac{2}{3}(AC - QC)$,$\therefore QC = \frac{2}{5}AC$,$\therefore EQ = \frac{\sqrt{2}}{2}× \frac{2}{5}AC = \frac{\sqrt{2}}{5}AC$。$\because \angle CQE = \angle BEC = 135°$,$\angle CEQ = \angle BCE$,$\therefore \triangle CEQ\sim \triangle BCE$,$\therefore \frac{EQ}{CE} = \frac{CE}{BC}$,$\therefore CE^2 = EQ· BC = \frac{\sqrt{2}}{5}AC× \sqrt{2}AC = \frac{2}{5}AC^2$,$\therefore \frac{CE^2}{AC^2} = \frac{2}{5}$,$\therefore \frac{CE}{AC} = \frac{\sqrt{10}}{5}$。故答案为$\frac{\sqrt{10}}{5}$。
17. (8 分) 计算:
(1)$\cos 30^{\circ} · \tan 60^{\circ} - \sqrt{2} \sin 45^{\circ}$;
(2)已知 $x : y = 1 : 2$,求代数式 $\frac{3x - y}{x + 2y}$ 的值。
(1)$\cos 30^{\circ} · \tan 60^{\circ} - \sqrt{2} \sin 45^{\circ}$;
(2)已知 $x : y = 1 : 2$,求代数式 $\frac{3x - y}{x + 2y}$ 的值。
答案:
17.解:
(1)$\cos 30° · \tan 60° - \sqrt{2}\sin 45° = \frac{\sqrt{3}}{2}× \sqrt{3} - \sqrt{2}× \frac{\sqrt{2}}{2} = \frac{3}{2} - 1 = \frac{1}{2}$。
(2)$\because x:y = 1:2$,$\therefore y = 2x$,$\therefore \frac{3x - y}{x + 2y} = \frac{3x - 2x}{x + 4x} = \frac{1}{5}$。
(1)$\cos 30° · \tan 60° - \sqrt{2}\sin 45° = \frac{\sqrt{3}}{2}× \sqrt{3} - \sqrt{2}× \frac{\sqrt{2}}{2} = \frac{3}{2} - 1 = \frac{1}{2}$。
(2)$\because x:y = 1:2$,$\therefore y = 2x$,$\therefore \frac{3x - y}{x + 2y} = \frac{3x - 2x}{x + 4x} = \frac{1}{5}$。
查看更多完整答案,请扫码查看