2026年王朝霞考点梳理时习卷九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年王朝霞考点梳理时习卷九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年王朝霞考点梳理时习卷九年级数学全一册人教版》

21. (10分)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN = 45°,把△ADN按顺时针方向旋转一定角度后得到△ABE.
(1)△ADN绕旋转中心
A
点,按顺时针方向旋转
90
°得到△ABE;
(2)求证:△AEM≌△ANM;
(3)若BM = 3,DN = 2,求正方形ABCD的边长.
答案: 21.解:
(1)A 90              (2分)
(2)证明:由旋转的性质,得AE = AN,∠BAE = ∠DAN.
∵四边形ABCD是正方形,
∴∠BAD = 90°,即∠BAN + ∠DAN = 90°.
∴∠BAN + ∠BAE = 90°,即∠EAN = 90°.
∵∠MAN = 45°,
∴∠MAE = ∠EAN - ∠MAN = 45°.     (4分)
∴∠MAE = ∠MAN.
∵AM = AM,
∴△AEM≌△ANM.           (6分)
(3)设正方形ABCD的边长为x,则BC = CD = x.
∵BM = 3,DN = 2,
∴CM = BC - BM = x - 3,CN = CD - DN = x - 2.
由旋转的性质,得BE = DN = 2.
∴ME = BE + BM = 2 + 3 = 5.

(2)知,△AEM≌△ANM.
∴MN = ME = 5.            (8分)
∵四边形ABCD是正方形,
∴∠C = 90°.
在Rt△CMN中,CM² + CN² = MN²,
即(x - 3)² + (x - 2)² = 5².
解得x = 6或x = -1(不符合题意,舍去).
∴正方形ABCD的边长为6.      (10分)
22. (10分)问题情境:综合与实践课上,老师提出如下问题,如图1,在Rt△ABC中,∠C = 90°,AC = 6,BC = 8.将△ABC绕点A逆时针旋转得到△ADE,旋转角小于∠CAB,点B的对应点为点D,点C的对应点为点E,DE交AB于点O,延长DE交BC于点P.

        
数学思考:(1)PC与PE的数量关系为
PC=PE
.
深入探究:(2)在以上图形旋转的过程中,老师让同学们提出新的问题.
①“乐学小组”提出问题:如图2,当∠CAE = 45°时,线段BP的长为
14-6$\sqrt{2}$
.
②“善思小组”提出问题:如图3,当∠CAE = ∠B时,求线段BP的长.
答案:
22.解:
(1)PC = PE             (2分)
(2)①14 - 6$\sqrt{2}$             (5分)
[解析]如图,连接AP,延长AE交BC于点F.
         FBCP
由旋转的性质知,AC = AE,∠AED = ∠C = 90°.
∴∠AEP = 90°,
∴∠C = ∠AEP.
∵AP = AP,
∴Rt△APC≌Rt△APE.
∴PC = PE.
∵∠CAE = 45°,∠C = 90°,
∴∠EFP = 45°.
∵∠AEP = 90°,
∴∠PEF = 90°.
∴∠EPF = 45°.
∴∠EPF = ∠EFP = ∠CAE.
∴PE = EF,AC = CF = 6.
设PC = PE = x,则PF = $\sqrt{PE² + EF²}$ = $\sqrt{2}$x.
∴CF = PC + PF = x + $\sqrt{2}$x = 6.
∴x = 6$\sqrt{2}$ - 6.
∴BP = BC - PC = 14 - 6$\sqrt{2}$.

∵∠C = 90°,AC = 6,BC = 8,
∴AB = $\sqrt{AC² + BC²}$ = 10.        (6分)
由旋转的性质,得DE = BC = 8,∠D = ∠B,∠CAB = ∠EAD.
∴∠CAE = ∠B,
∴∠DAB = ∠B.
∵AD//BC,
∴∠DPB = ∠D.
∴∠DAB = ∠DPB = ∠D = ∠B.
∴AO = DO,BO = PO.          (7分)
∵AB = AO + BO = 10,
∴PD = DO + PO = 10.
∴PE = PD - DE = 2,
∴PC = PE = 2.
∴BP = BC - PC = 6.          (10分)

查看更多完整答案,请扫码查看

关闭