第48页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
18. (13 分)如图,在 $ Rt \triangle ABC $ 中,$ \angle ACB = 90^{\circ} $,以 $ AC $ 为直径的 $ \odot O $ 与 $ AB $ 边交于点 $ D $,过点 $ D $ 作 $ \odot O $ 的切线,交 $ BC $ 于点 $ E $。
(1)求证:$ EB = EC $。
(2)若以点 $ O $,$ D $,$ E $,$ C $ 为顶点的四边形是正方形,试判断 $ \triangle ABC $ 的形状,并说明理由。

(1)求证:$ EB = EC $。
(2)若以点 $ O $,$ D $,$ E $,$ C $ 为顶点的四边形是正方形,试判断 $ \triangle ABC $ 的形状,并说明理由。
答案:
18.
(1)证明:如图,连接$OD$.
$\because AC$为$\odot O$的直径,$\angle ACB = 90^{\circ},\therefore CB$是$\odot O$的切线.
又$\because DE$切$\odot O$于点$D$,
$\therefore ED = EC,\angle ODE = 90^{\circ}$,
$\therefore \angle ODA + \angle EDB = 90^{\circ}$.
$\because OA = OD,\therefore \angle ODA = \angle OAD$.
又$\because \angle OAD + \angle B = 90^{\circ}$,
$\therefore \angle EDB = \angle B,\therefore ED = EB$,
$\therefore EB = EC$.
(2)解:$\triangle ABC$为等腰直角三角形.理由如下:
$\because$四边形$ODEC$为正方形,$\therefore OC = CE$.
又$\because OC = \frac{1}{2}AC,CE = EB = \frac{1}{2}BC$,
$\therefore AC = BC,\therefore \triangle ACB$为等腰直角三角形.
18.
(1)证明:如图,连接$OD$.
$\because AC$为$\odot O$的直径,$\angle ACB = 90^{\circ},\therefore CB$是$\odot O$的切线.
又$\because DE$切$\odot O$于点$D$,
$\therefore ED = EC,\angle ODE = 90^{\circ}$,
$\therefore \angle ODA + \angle EDB = 90^{\circ}$.
$\because OA = OD,\therefore \angle ODA = \angle OAD$.
又$\because \angle OAD + \angle B = 90^{\circ}$,
$\therefore \angle EDB = \angle B,\therefore ED = EB$,
$\therefore EB = EC$.
(2)解:$\triangle ABC$为等腰直角三角形.理由如下:
$\because$四边形$ODEC$为正方形,$\therefore OC = CE$.
又$\because OC = \frac{1}{2}AC,CE = EB = \frac{1}{2}BC$,
$\therefore AC = BC,\therefore \triangle ACB$为等腰直角三角形.
19. (13 分)$ \triangle ABC $ 的内切圆 $ I $ 和边 $ BC $,$ CA $,$ AB $ 分别相切于点 $ D $,$ E $,$ F $。
(1)如图①,若 $ \angle B = 60^{\circ} $,$ \angle C = 70^{\circ} $,求 $ \angle EDF $ 的度数;
(2)如图②,若 $ BC = 3 $,$ CA = 4 $,$ AB = 5 $,求 $ \triangle ABC $ 内切圆 $ I $ 的半径。

(1)如图①,若 $ \angle B = 60^{\circ} $,$ \angle C = 70^{\circ} $,求 $ \angle EDF $ 的度数;
(2)如图②,若 $ BC = 3 $,$ CA = 4 $,$ AB = 5 $,求 $ \triangle ABC $ 内切圆 $ I $ 的半径。
答案:
19. 解:
(1)如图①,连接$FI,EI.\angle A = 180^{\circ} - (\angle B + \angle C) = 50^{\circ}$,
$\because$内切圆$I$和边$CA$,$AB$分别相切于点$E$,$F$,
$\therefore \angle AFI = \angle AEI = 90^{\circ}$,
$\therefore \angle FIE = 360^{\circ} - 90^{\circ} - 90^{\circ} - 50^{\circ} = 130^{\circ}$,
$\therefore$由圆周角定理得$\angle EDF = \frac{1}{2}\angle FIE = 65^{\circ}$.
(2)连接$ID,IE$,如图②.
$\because BC^{2} + AC^{2} = 3^{2} + 4^{2} = 25,AB^{2} = 25$,
$\therefore BC^{2} + AC^{2} = AB^{2}$,
$\therefore \triangle ABC$为直角三角形,$\angle ACB = 90^{\circ}$,
$\therefore$四边形$DCEI$为正方形,
$\therefore ID = CD = CE = IE$,
$\because BD = BF,AE = AF$,
$\therefore CD + CE = BC + AC - BD - AE = BC + AC - AB = 2$,
$\therefore \triangle ABC$内切圆的半径为$1$.
19. 解:
(1)如图①,连接$FI,EI.\angle A = 180^{\circ} - (\angle B + \angle C) = 50^{\circ}$,
$\because$内切圆$I$和边$CA$,$AB$分别相切于点$E$,$F$,
$\therefore \angle AFI = \angle AEI = 90^{\circ}$,
$\therefore \angle FIE = 360^{\circ} - 90^{\circ} - 90^{\circ} - 50^{\circ} = 130^{\circ}$,
$\therefore$由圆周角定理得$\angle EDF = \frac{1}{2}\angle FIE = 65^{\circ}$.
(2)连接$ID,IE$,如图②.
$\because BC^{2} + AC^{2} = 3^{2} + 4^{2} = 25,AB^{2} = 25$,
$\therefore BC^{2} + AC^{2} = AB^{2}$,
$\therefore \triangle ABC$为直角三角形,$\angle ACB = 90^{\circ}$,
$\therefore$四边形$DCEI$为正方形,
$\therefore ID = CD = CE = IE$,
$\because BD = BF,AE = AF$,
$\therefore CD + CE = BC + AC - BD - AE = BC + AC - AB = 2$,
$\therefore \triangle ABC$内切圆的半径为$1$.
20. (15 分)如图①,四边形 $ ABCD $ 内接于 $ \odot O $,$ AD $ 为直径,过点 $ C $ 作 $ CE \perp AB $ 于点 $ E $,连接 $ AC $。
(1)求证:$ \angle CAD = \angle ECB $。
(2)若 $ CE $ 是 $ \odot O $ 的切线,$ \angle CAD = 30^{\circ} $,连接 $ OC $,如图②。
①请判断四边形 $ ABCO $ 的形状,并说明理由;
②当 $ AB = 2 $ 时,求 $ AD $,$ AC $ 与 $ \overset{\frown}{CD} $ 围成阴影部分的面积。

(1)求证:$ \angle CAD = \angle ECB $。
(2)若 $ CE $ 是 $ \odot O $ 的切线,$ \angle CAD = 30^{\circ} $,连接 $ OC $,如图②。
①请判断四边形 $ ABCO $ 的形状,并说明理由;
②当 $ AB = 2 $ 时,求 $ AD $,$ AC $ 与 $ \overset{\frown}{CD} $ 围成阴影部分的面积。
答案:
20.
(1)证明:$\because$四边形$ABCD$内接于$\odot O$,
$\therefore \angle D + \angle ABC = 180^{\circ}$,
$\because \angle EBC + \angle ABC = 180^{\circ},\therefore \angle D = \angle EBC$,
$\because AD$为$\odot O$直径,$\therefore \angle ACD = 90^{\circ}$,
$\therefore \angle D + \angle CAD = 90^{\circ}$,
$\because CE \perp AB,\therefore \angle ECB + \angle EBC = 90^{\circ}$,
$\therefore \angle CAD = \angle ECB$.
(2)解:①四边形$ABCO$是菱形.理由如下:
$\because CE$是$\odot O$的切线,$\therefore OC \perp EC,\because AB \perp EC$,
$\therefore \angle OCE = \angle E = 90^{\circ},\therefore \angle OCE + \angle E = 180^{\circ}$,
$\therefore OC// AE,\therefore \angle ACO = \angle BAC$,
$\because OA = OC,\therefore \angle ACO = \angle CAD,\therefore \angle BAC = \angle CAD$,
$\because \angle CAD = \angle ECB,\angle CAD = 30^{\circ}$,
$\therefore \angle EBC = 90^{\circ} - 30^{\circ} = 60^{\circ},\angle BAO = 2\angle CAD = 60^{\circ}$,
$\therefore BC// AO,\therefore$四边形$ABCO$是平行四边形,
$\because OA = OC,\therefore$四边形$ABCO$是菱形.
②$\because$四边形$ABCO$是菱形,$\therefore AO = AB = 2,AD = 4$,
$\because \angle CAD = 30^{\circ},\therefore CD = \frac{1}{2}AD = 2,AC = 2\sqrt{3}$,过点$C$作$CF \perp AD$于点$F$,
$\therefore CF = \sqrt{3},\therefore S_{\triangle AOC} = \frac{1}{2} × 2 × \sqrt{3} = \sqrt{3}$,
$\because OC// AE,\therefore \angle DOC = \angle BAO = 60^{\circ}$,
$\therefore S_{扇形OCD} = \frac{60\pi × 2^{2}}{360} = \frac{2}{3}\pi$,
$\therefore$阴影部分的面积为$\sqrt{3} + \frac{2}{3}\pi$.
20.
(1)证明:$\because$四边形$ABCD$内接于$\odot O$,
$\therefore \angle D + \angle ABC = 180^{\circ}$,
$\because \angle EBC + \angle ABC = 180^{\circ},\therefore \angle D = \angle EBC$,
$\because AD$为$\odot O$直径,$\therefore \angle ACD = 90^{\circ}$,
$\therefore \angle D + \angle CAD = 90^{\circ}$,
$\because CE \perp AB,\therefore \angle ECB + \angle EBC = 90^{\circ}$,
$\therefore \angle CAD = \angle ECB$.
(2)解:①四边形$ABCO$是菱形.理由如下:
$\because CE$是$\odot O$的切线,$\therefore OC \perp EC,\because AB \perp EC$,
$\therefore \angle OCE = \angle E = 90^{\circ},\therefore \angle OCE + \angle E = 180^{\circ}$,
$\therefore OC// AE,\therefore \angle ACO = \angle BAC$,
$\because OA = OC,\therefore \angle ACO = \angle CAD,\therefore \angle BAC = \angle CAD$,
$\because \angle CAD = \angle ECB,\angle CAD = 30^{\circ}$,
$\therefore \angle EBC = 90^{\circ} - 30^{\circ} = 60^{\circ},\angle BAO = 2\angle CAD = 60^{\circ}$,
$\therefore BC// AO,\therefore$四边形$ABCO$是平行四边形,
$\because OA = OC,\therefore$四边形$ABCO$是菱形.
②$\because$四边形$ABCO$是菱形,$\therefore AO = AB = 2,AD = 4$,
$\because \angle CAD = 30^{\circ},\therefore CD = \frac{1}{2}AD = 2,AC = 2\sqrt{3}$,过点$C$作$CF \perp AD$于点$F$,
$\therefore CF = \sqrt{3},\therefore S_{\triangle AOC} = \frac{1}{2} × 2 × \sqrt{3} = \sqrt{3}$,
$\because OC// AE,\therefore \angle DOC = \angle BAO = 60^{\circ}$,
$\therefore S_{扇形OCD} = \frac{60\pi × 2^{2}}{360} = \frac{2}{3}\pi$,
$\therefore$阴影部分的面积为$\sqrt{3} + \frac{2}{3}\pi$.
查看更多完整答案,请扫码查看