1. 根据$\frac {1}{4}= \frac {1}{2}-\frac {1}{4}$,用拆分法计算$\frac {1}{2}+\frac {1}{4}+\frac {1}{8}+\frac {1}{16}+... +\frac {1}{256}$。
答案:
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots+\frac{1}{256}$
$=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{16})+\cdots+(\frac{1}{128}-\frac{1}{256})$
$=1-\frac{1}{256}$
$=\frac{255}{256}$
$=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{16})+\cdots+(\frac{1}{128}-\frac{1}{256})$
$=1-\frac{1}{256}$
$=\frac{255}{256}$
2. 用拆分法计算$\frac {2}{3}+\frac {2}{15}+\frac {2}{35}+... +\frac {2}{399}$。
答案:
$\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\cdots+\frac{2}{399}$
$=(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+\cdots+(\frac{1}{19}-\frac{1}{21})$
$=1-\frac{1}{21}$
$=\frac{20}{21}$
$=(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+\cdots+(\frac{1}{19}-\frac{1}{21})$
$=1-\frac{1}{21}$
$=\frac{20}{21}$
3. $\frac {5}{6}= \frac {1}{2}+\frac {1}{3}$,$\frac {7}{12}= \frac {1}{3}+\frac {1}{4}$,$\frac {9}{20}= \frac {1}{4}+\frac {1}{5}$……根据规律计算$\frac {5}{6}-\frac {7}{12}+\frac {9}{20}-\frac {11}{30}$。
答案:
$\frac{5}{6}-\frac{7}{12}+\frac{9}{20}-\frac{11}{30}$
$=\frac{1}{2}+\frac{1}{3}-\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{5}+\frac{1}{6}\right)$
$=\frac{1}{2}+\frac{1}{3}-\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}$
$=\frac{1}{2}-\frac{1}{6}$
$=\frac{1}{3}$
$=\frac{1}{2}+\frac{1}{3}-\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{5}+\frac{1}{6}\right)$
$=\frac{1}{2}+\frac{1}{3}-\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}$
$=\frac{1}{2}-\frac{1}{6}$
$=\frac{1}{3}$
4. 已知三个分子是1的分数之和是$\frac {1}{12}$,这三个分数分别是多少?
解:答案不唯一,例如:
$\frac{1}{12}=\frac{1×(1+2+3)}{12×(1+2+3)}=\frac{1+2+3}{72}=\frac{1}{72}+\frac{2}{72}+\frac{3}{72}=\frac{1}{72}+\frac{1}{36}+\frac{1}{24}$
这三个分数分别是$\frac{1}{72}$,$\frac{1}{36}$,$\frac{1}{24}$。
解:答案不唯一,例如:
$\frac{1}{12}=\frac{1×(1+2+3)}{12×(1+2+3)}=\frac{1+2+3}{72}=\frac{1}{72}+\frac{2}{72}+\frac{3}{72}=\frac{1}{72}+\frac{1}{36}+\frac{1}{24}$
这三个分数分别是$\frac{1}{72}$,$\frac{1}{36}$,$\frac{1}{24}$。
答案:
解:答案不唯一,例如:
$\frac{1}{12}=\frac{1×(1+2+3)}{12×(1+2+3)}=\frac{1+2+3}{72}=\frac{1}{72}+\frac{2}{72}+\frac{3}{72}=\frac{1}{72}+\frac{1}{36}+\frac{1}{24}$
这三个分数分别是$\frac{1}{72}$,$\frac{1}{36}$,$\frac{1}{24}$。
$\frac{1}{12}=\frac{1×(1+2+3)}{12×(1+2+3)}=\frac{1+2+3}{72}=\frac{1}{72}+\frac{2}{72}+\frac{3}{72}=\frac{1}{72}+\frac{1}{36}+\frac{1}{24}$
这三个分数分别是$\frac{1}{72}$,$\frac{1}{36}$,$\frac{1}{24}$。
查看更多完整答案,请扫码查看