2025年人教金学典同步练习册同步解析与测评高中数学选择性必修第一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年人教金学典同步练习册同步解析与测评高中数学选择性必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年人教金学典同步练习册同步解析与测评高中数学选择性必修第一册人教版》

1. 已知直线$l$过点$(1,0)$,且与直线$y = \sqrt{3}(x - 1)$的夹角为$30^{\circ}$,则直线$l$的方程为__________.
答案:
1. x = 1 或 y = $\frac{\sqrt{3}}{3}$(x - 1)
【解析】如图,因为直线 y = $\sqrt{3}$(x - 1)的斜率为 $\sqrt{3}$,所以其倾斜角为 60°,且过点 (1,0).
第1题
又直线 l 与直线 y = $\sqrt{3}$(x - 1)的夹角为 30°,且过点 (1,0),由图可知,直线 l 的倾斜角为 30°或 90°.
故直线 l 的方程为 x = 1 或 y = $\frac{\sqrt{3}}{3}$(x - 1).
2. 如图,在平行四边形$OABC$中,点$A(3,0)$,点$C(1,3)$.
(1)求$AB$所在直线的方程;
(2)过点$C$作$CD\perp AB$,交$AB$于点$D$,求$CD$所在直线的方程.
答案: 2.
(1)因为四边形 OABC 是平行四边形,所以 AB//OC,因为 AB 所在直线的斜率 k_{AB} = k_{OC} = $\frac{3 - 0}{1 - 0}$ = 3,所以 AB 所在直线的方程为 y - 0 = 3(x - 3).
(2)由
(1)知 k_{AB} = 3,因为 CD⊥AB,所以 CD 所在直线的斜率 k_{CD} = - $\frac{1}{3}$,所以 CD 所在直线的方程为 y - 3 = - $\frac{1}{3}$(x - 1).

查看更多完整答案,请扫码查看

关闭